Skip to main content

A Statistical View on Calcium Oscillations

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1131))

Abstract

Transient rises and falls of the intracellular calcium concentration have been observed in numerous cell types and under a plethora of conditions. There is now a growing body of evidence that these whole-cell calcium oscillations are stochastic, which poses a significant challenge for modelling. In this review, we take a closer look at recently developed statistical approaches to calcium oscillations. These models describe the timing of whole-cell calcium spikes, yet their parametrisations reflect subcellular processes. We show how non-stationary calcium spike sequences, which e.g. occur during slow depletion of intracellular calcium stores or in the presence of time-dependent stimulation, can be analysed with the help of so-called intensity functions. By utilising Bayesian concepts, we demonstrate how values of key parameters of the statistical model can be inferred from single cell calcium spike sequences and illustrate what information whole-cell statistical models can provide about the subcellular mechanistic processes that drive calcium oscillations. In particular, we find that the interspike interval distribution of HEK293 cells under constant stimulation is captured by a Gamma distribution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Berridge MJ, Galione A (1988) Cytosolic calcium oscillators. FASEB J 2:3074–3082

    Article  CAS  PubMed  Google Scholar 

  2. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  CAS  PubMed  Google Scholar 

  3. Parekh AB (2011) Decoding cytosolic Ca2+ oscillations. Trends Biochem Sci 36:78–87

    Article  CAS  PubMed  Google Scholar 

  4. Dupont G, Combettes L (2016) Fine tuning of cytosolic Ca2+ oscillations. F1000Research 5. https://f1000research.com/articles/5-2036/v1

  5. Thul R, Bellamy TC, Roderick HL, Bootman MD, Coombes S (2008) Calcium oscillations. Adv Exp Med Biol 641:1–27

    CAS  PubMed  Google Scholar 

  6. Dupont G, Combettes L, Bird GS, Putney JW (2011) Calcium oscillations. Cold Spring Harb Perspect Biol 3:pii:a004226

    Google Scholar 

  7. Dupont G, Falcke M, Kirk V, Sneyd J (2016) Models of calcium signalling. Interdisciplinary Applied Mathematics, vol 43. Springer, Cham

    Google Scholar 

  8. Schuster S, Marhl M, Höfer T (2002) Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling. Eur J Biochem 269:1333–1355

    Article  CAS  PubMed  Google Scholar 

  9. Uhlén P, Fritz N (2010) Biochemistry of calcium oscillations. Biochem Biophys Res Commun 396:28–32

    Article  PubMed  CAS  Google Scholar 

  10. Dolmetsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392:933–936

    Article  CAS  PubMed  Google Scholar 

  11. Noren DP, Chou WH, Lee SH, Qutub AA, Warmflash A, Wagner DS et al (2016) Endothelial cells decode VEGF-mediated Ca2+ signaling patterns to produce distinct functional responses. Sci Signal 9:ra20–ra20

    Google Scholar 

  12. Di Capite J, Ng SW, Parekh AB (2009) Decoding of cytoplasmic Ca2+ oscillations through the spatial signature drives gene expression. Curr Biol 19:853–858

    Article  PubMed  CAS  Google Scholar 

  13. Nunemaker CS, Bertram R, Sherman A, Tsaneva-Atanasova K, Daniel CR, Satin LS (2006) Glucose modulates [Ca2+]i oscillations in pancreatic islets via ionic and glycolytic mechanisms. Biophys J 91:2082–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tse A, Tse FW, Almers W, Hille B (1993) Rhythmic exocytosis stimulated by GnRH-induced calcium oscillations in rat gonadotropes. Science (New York, NY). 260:82–84

    Google Scholar 

  15. Colsoul B, Schraenen A, Lemaire K, Quintens R, Van Lommel L, Segal A et al (2010) Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5−∕− mice. Proc Natl Acad Sci U S A 107:5208–5213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tsaneva-Atanasova K, Yule DI, Sneyd J (2005) Calcium oscillations in a triplet of pancreatic acinar cells. Biophys J 88:1535–1551

    Article  CAS  PubMed  Google Scholar 

  17. Tse A, Lee AK, Tse FW (2012) Ca2+ signaling and exocytosis in pituitary corticotropes. Cell Calcium 51:253–259

    Article  CAS  PubMed  Google Scholar 

  18. Santella L, Lim D, Moccia F (2004) Calcium and fertilization: the beginning of life. Trends Biochem Sci 29:400–408

    Article  CAS  PubMed  Google Scholar 

  19. Whitaker M (2006) Calcium at fertilization and in early development. Physiol Rev 86:25–88

    Article  CAS  PubMed  Google Scholar 

  20. Denninger P, Bleckmann A, Lausser A, Vogler F, Ott T, Ehrhardt DW et al (2014) Male-female communication triggers calcium signatures during fertilization in arabidopsis. Nat Commun 5:4645

    Article  CAS  PubMed  Google Scholar 

  21. Van Nhieu GT, Clair C, Bruzzone R, Mesnil M, Sansonetti P, Combettes L (2003) Connexin-dependent inter-cellular communication increases invasion and dissemination of Shigella in epithelial cells. Nat Cell Biol 5:720–726

    Article  CAS  Google Scholar 

  22. Ullah G, Jung P, Machaca K (2007) Modeling Ca2+ signaling differentiation during oocyte maturation. Cell Calcium 42:556–564

    Article  CAS  PubMed  Google Scholar 

  23. Ullah G, Jung P (2006) Modeling the statistics of elementary calcium release events. Biophys J 90:3485–3495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shuai JW, Jung P (2003) Optimal ion channel clustering for intracellular calcium signaling. Proc Natl Acad Sci U S A 100:506–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shuai JW, Jung P (2002) Stochastic properties of Ca2+ release of inositol 1,4,5-trisphosphate receptor clusters. Biophys J 83:87–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shuai J, Jung P (2002) Optimal intracellular calcium signaling. Phys Rev Lett 88:068102

    Article  CAS  PubMed  Google Scholar 

  27. De Young GW, Keizer J (1992) A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc Natl Acad Sci U S A 89:9895–9899

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li Y, Rinzel J (1994) Equations for InsP3 receptor-mediated [Ca2+]i oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J Theor Biol 166:461–473

    Article  CAS  PubMed  Google Scholar 

  29. Tang Y, Stephenson J, Othmer H (1996) Simplification and analysis of models of calcium dynamics based on IP3-sensitive calcium channel kinetics. Biophys J 70:246–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gaspers LD, Bartlett PJ, Politi A, Burnett P, Metzger W, Johnston J et al (2014) Hormone-induced calcium oscillations depend on cross-coupling with inositol 1,4,5-trisphosphate oscillations. Cell Rep 9:1209–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Politi A, Gaspers LD, Thomas J, Höfer T (2006) Models of IP3 and Ca2+ oscillations: frequency encoding and identification of underlying feedbacks. Biophys J 90:3120–3133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun CH, Wacquier B, Aguilar DI, Carayol N, Denis K, Boucherie S et al (2017) The Shigella type III effector IpgD recodes Ca2+ signals during invasion of epithelial cells. EMBO J 36(17):2567–2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bessonnard S, De Mot L, Gonze D, Barriol M, Dennis C, Goldbeter A et al (2014) Gata6, Nanog and Erk signaling control cell fate in the inner cell mass through a tristable regulatory network. Development (Cambridge, England) 141:3637–3648

    Google Scholar 

  34. De Caluwé J, Dupont G (2013) The progression towards Alzheimer’s disease described as a bistable switch arising from the positive loop between amyloids and Ca2+. J Theor Biol 331:12–18

    Article  PubMed  CAS  Google Scholar 

  35. Dupont G, Lokenye EFL, Challiss RAJ (2011) A model for Ca2+ oscillations stimulated by the type 5 metabotropic glutamate receptor: an unusual mechanism based on repetitive, reversible phosphorylation of the receptor. Biochimie 93:2132–2138

    Article  CAS  PubMed  Google Scholar 

  36. Dupont G, Abou-Lovergne A, Combettes L (2008) Stochastic aspects of oscillatory Ca2+ dynamics in hepatocytes. Biophys J 95:2193–2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Swillens S, Champeil P, Combettes L, Dupont G (1998) Stochastic simulation of a single inositol 1,4,5-trisphosphate-sensitive Ca2+ channel reveals repetitive openings during ‘blip-like’ Ca2+ transients. Cell Calcium. 23:291–302

    Article  CAS  PubMed  Google Scholar 

  38. Tran Van Nhieu G, Kai Liu B, Zhang J, Pierre F, Prigent S, Sansonetti P et al (2013) Actin-based confinement of calcium responses during Shigella invasion. Nat Commun 4:1567

    Article  PubMed  CAS  Google Scholar 

  39. Salazar C, Zaccaria Politi A, Höfer T (2008) Decoding of calcium oscillations by phosphorylation cycles: analytic results. Biophys J 94:1203–1215

    Article  CAS  PubMed  Google Scholar 

  40. Kummer U, Olsen LF, Dixon CJ, Green AK, Bornberg-Bauer E, Baier G (2000) Switching from simple to complex oscillations in calcium signaling. Biophys J 79:1188–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kummer U, Krajnc B, Pahle J, Green AK, Dixon CJ, Marhl M (2005) Transition from stochastic to deterministic behavior in calcium oscillations. Biophys J 89:1603–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sneyd J, Han JM, Wang L, Chen J, Yang X, Tanimura A et al (2017) On the dynamical structure of calcium oscillations. Proc Natl Acad Sci U S A 114:1456–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cao P, Tan X, Donovan G, Sanderson MJ, Sneyd J (2014) A deterministic model predicts the properties of stochastic calcium oscillations in airway smooth muscle cells. PLoS Comput Biol 10:e1003783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wang IY, Bai Y, Sanderson MJ, Sneyd J (2010) A mathematical analysis of agonist- and KCl-induced Ca2+ oscillations in mouse airway smooth muscle cells. Biophys J 98:1170–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Higgins ER, Cannell MB, Sneyd J (2006) A buffering SERCA pump in models of calcium dynamics. Biophys J 91:151–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sneyd J, Tsaneva-Atanasova K, Yule DI, Thompson JL, Shuttleworth TJ (2004) Control of calcium oscillations by membrane fluxes. Proc Natl Acad Sci U S A 101:1392–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sneyd J, Tsaneva-Atanasova K, Reznikov V, Bai Y, Sanderson MJ, Yule DI (2006) A method for determining the dependence of calcium oscillations on inositol trisphosphate oscillations. Proc Natl Acad Sci USA 103:1675–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nowacki J, Mazlan S, Osinga HM, Tsaneva-Atanasova K (2010) The role of large-conductance Calcium-activated K+ (BK) channels in shaping bursting oscillations of a somatotroph cell model. Physica D Nonlinear Phenomena 239:485–493

    Article  Google Scholar 

  49. Bootman M, Niggli E, Berridge M, Lipp P (1997) Imaging the hierarchical Ca2+ signalling system in HeLa cells. J Physiol 499 (Pt 2):307–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Smith IF, Wiltgen SM, Parker I (2009) Localization of puff sites adjacent to the plasma membrane: functional and spatial characterization of Ca2+ signaling in SH-SY5Y cells utilizing membrane-permeant caged IP3. Cell Calcium 45:65–76

    Article  CAS  PubMed  Google Scholar 

  51. Taufiq-Ur-Rahman, Skupin A, Falcke M, Taylor CW (2009) Clustering of InsP3receptors by InsP3retunes their regulation by InsP3 and Ca2+. Nature 458:655–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Keebler MV, Taylor CW (2017) Endogenous signalling pathways and caged IP3 evoke Ca2+ puffs at the same abundant immobile intracellular sites. J Cell Sci 130:3728–3739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Konieczny V, Keebler MV, Taylor CW (2012) Spatial organization of intracellular Ca2+ signals. Semin Cell Dev Biol 23:172–180

    Article  CAS  PubMed  Google Scholar 

  54. Bruno L, Solovey G, Ventura AC, Dargan S, Dawson SP (2010) Quantifying calcium fluxes underlying calcium puffs in Xenopus laevis oocytes. Cell Calcium 47:273–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shuai J, Pearson JE, Foskett JK, Mak DOD, Parker I (2007) A kinetic model of single and clustered IP3 receptors in the absence of Ca2+ feedback. Biophys J 93:1151–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Smith IF, Parker I (2009) Imaging the quantal substructure of single IP3R channel activity during Ca2+ puffs in intact mammalian cells. Proc Natl Acad Sci U S A 106:6404–6409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Flegg MB, Rüdiger S, Erban R (2013) Diffusive spatio-temporal noise in a first-passage time model for intracellular calcium release. J Chem Phys 138:154103

    Article  PubMed  CAS  Google Scholar 

  58. Dobramysl U, Rüdiger S, Erban R (2016) Particle-based multiscale modeling of calcium puff dynamics. Multiscale Model Simul 14:997–1016

    Article  Google Scholar 

  59. Weinberg SH, Smith GD (2014) The influence of Ca2+ buffers on free [Ca2+] fluctuations and the effective volume of Ca2+ microdomains. Biophys J 106:2693–2709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wieder N, Fink R, von Wegner F (2015) Exact stochastic simulation of a calcium microdomain reveals the impact of Ca2+ fluctuations on IP3R gating. Biophys J 108:557–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Falcke M, Moein M, Tilunaite A, Thul R, Skupin A (2018) On the phase space structure of IP3 induced Ca2+ signalling and concepts for predictive modeling. Chaos (Woodbury, NY) 28:045115

    Google Scholar 

  62. Skupin A, Kettenmann H, Winkler U, Wartenberg M, Sauer H, Tovey SC et al (2008) How does intracellular Ca2+ oscillate: by chance or by the clock? Biophys J 94:2404–2411

    Article  CAS  PubMed  Google Scholar 

  63. Thurley K, Smith IF, Tovey SC, Taylor CW, Parker I, Falcke M (2011) Timescales of IP3-evoked Ca2+ spikes emerge from Ca2+ puffs only at the cellular level. Biophys J 101:2638–2644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Moein M, Grzyb K, Gonçalves Martins T, Komoto S, Peri F, Crawford A et al (2018) CaSiAn: a calcium signaling analyzer tool. Bioinformatics (Oxford, England) 1:11

    Google Scholar 

  65. Thurley K, Tovey SC, Moenke G, Prince VL, Meena A, Thomas J et al (2014) Reliable encoding of stimulus intensities within random sequences of intracellular Ca2+ spikes. Sci Signal 7:ra59

    Google Scholar 

  66. Rooney TA, Sass EJ, Thomas AP (1990) Agonist-induced cytosolic calcium oscillations originate from a specific locus in single hepatocytes. J Biol Chem 265:10792–10796

    CAS  PubMed  Google Scholar 

  67. Tilunaite A, Croft W, Russell N, Bellamy TC, Thul R (2017) A Bayesian approach to modelling heterogeneous calcium responses in cell populations. PLoS Comput Biol 13:e1005794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Barbieri R, Quirk MC, Frank LM, Wilson MA, Brown EN (2001) Construction and analysis of non-Poisson stimulus-response models of neural spiking activity. J Neurosci Methods 105:25–37

    Article  CAS  PubMed  Google Scholar 

  69. Miura K, Tsubo Y, Okada M, Fukai T (2007) Balanced excitatory and inhibitory inputs to cortical neurons decouple firing irregularity from rate modulations. J Neurosci 27:13802–13812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Thurley K, Skupin A, Thul R, Falcke M (2012) Fundamental properties of Ca2+ signals. Biochim Biophys Acta 1820:1185–1194

    Article  CAS  PubMed  Google Scholar 

  71. Croft W, Reusch K, Tilunaite A, Russel N, Thul R, Bellamy TC (2016) Probabilistic encoding of stimulus strength in astrocyte global calcium signals. Glia 64:537–552

    Article  PubMed  Google Scholar 

  72. Thul R, Falcke M (2006) Frequency of elemental events of intracellular Ca2+ dynamics. Phys Rev E 73(6 Pt 1):061923

    Article  CAS  Google Scholar 

  73. Thul R, Falcke M (2007) Waiting time distributions for clusters of complex molecules. Europhys Lett 79:38003

    Article  CAS  Google Scholar 

  74. Thul R, Thurley K, Falcke M (2009) Toward a predictive model of Ca2+ puffs. Chaos (Woodbury, NY) 19:037108

    Google Scholar 

  75. Thurley K, Falcke M (2011) Derivation of Ca2+ signals from puff properties reveals that pathway function is robust against cell variability but sensitive for control. Proc Natl Acad Sci U S A 108:427–432

    Article  CAS  PubMed  Google Scholar 

  76. Moenke G, Falcke M, Thurley K (2012) Hierarchic stochastic modelling applied to intracellular Ca2+ signals. PLoS One 7:e51178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Papoulis A, Pillai SU (2002) Probability, random variables and stochastic processes, 4th edn. McGraw Hill, Boston

    Google Scholar 

  78. Ross SM (2003) Introduction to probability models, 8th edn. Academic, Amsterdam

    Google Scholar 

  79. Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th International Conference on Machine Learning, Stanford University, Palo Alto, pp 192–199

    Google Scholar 

  80. Cunningham JP, Yu B, Shenoy K, Sahani M (2008) Inferring neural firing rates from spike trains using gaussian processes. In: Platt JC, Koller D, Singer Y, Roweis S (eds) Advances in neural information processing systems, vol 20. MIT Press. Cambridge, MA, pp 329–336

    Google Scholar 

  81. Robert CP, Casella G (2005) Monte Carlo statistical methods. Springer Texts in Statistics. Springer, New York

    Google Scholar 

  82. Brown EN, Barbieri R, Ventura V, Kass RE, Frank LM (2002) The time-rescaling theorem and its application to neural spike train data analysis. Neural Comput 14:325–346

    Article  PubMed  Google Scholar 

  83. Skupin A, Falcke M (2010) Statistical analysis of calcium oscillations. Eu Phys J Spec Top 187:231–240

    Article  CAS  Google Scholar 

  84. Devroye L (1986) Non-uniform random variate generation. Springer, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Thul .

Editor information

Editors and Affiliations

Appendices

Appendix 1

We here show the equivalence of Eqs. (32.3) and (32.6). For this, it is convenient to introduce

$$\displaystyle \begin{aligned} F(t,s)=1-\int_s^t f(u,s) {\mathrm d} u\,. \end{aligned} $$
(32.18)

The right hand side of Eq. (32.6) can be written as a full derivative in the form

$$\displaystyle \begin{aligned} q(t|s)=-\frac{{\mathrm d} }{{\mathrm d} t} \ln F(t,s) \end{aligned} $$
(32.19)

Multiplying through by (−1) and integrating both sides with respect to t yields

$$\displaystyle \begin{aligned} -\int_s^t q(u|s) {\mathrm d} u= \ln F(t,s)\,, \end{aligned} $$
(32.20)

noting that \(\ln F(s,s)=0\). When we exponentiate both sides and use the fact that F(t, s) = f(t, s)∕q(t|s) as per Eq. (32.6) we arrive at Eq. (32.3).

Appendix 2

Here, we demonstrate how to practically apply Eq. (32.10) when f is given by the density for the Gamma distribution as in Eq. (32.5). We obtain

$$\displaystyle \begin{aligned} g_{\mathrm{G}}(u_i,u_{i-1}|x)=x(y_i)\frac{\beta^\alpha}{\varGamma(\alpha)}X_{i,i-1}^{\alpha-1}{\mathrm{e}}^{-\beta X_{i,i-1}}\,, {} \end{aligned} $$
(32.21)

where

$$\displaystyle \begin{aligned} X_{i,i-1}=\int_{y_{i-1}}^{y_i} x(v) {\mathrm d} v\,, {} \end{aligned} $$
(32.22)

since the difference (t − s) in the transformed time u is given by

$$\displaystyle \begin{aligned} u(t)-u(s)=u(y_i)-u(y_{i-1})=\int_0^{y_i} x(v) {\mathrm d} v- \int_0^{y_{i-1}} x(v) {\mathrm d} v=\int_{y_{i-1}}^{y_i} x(v) {\mathrm d} v\,. \end{aligned} $$
(32.23)

A common choice for f 1 and f n is a Poisson distribution, which leads to

$$\displaystyle \begin{aligned} g_1(u_1,0|x)=x(y_1) {\mathrm{e}}^{-X_{1,0}}\,,\qquad g_n(U,u_n|x)=e^{-X_{n+1,n}}\,, \end{aligned} $$
(32.24)

in the transformed time, where we have set y 0 = 0 and y n+1 = T.

Appendix 3

To generate the Ca2+ spikes that underlie the histogram in Fig. 32.3 we use inverse sampling [84]. Since x(t) is non-constant, we need to use the time-dependent ISI density g(u i, u i−1|x) from Eq. (32.10). For ease of presentation, we rewrite Eq. (32.10) in terms of the non-transformed Ca2+ spike times y i using the results from Appendix 2 as

$$\displaystyle \begin{aligned} f_{\mathrm{G}}(y_i,y_{i-1} |x)=x(y_i)\frac{\beta^\alpha}{\varGamma(\alpha)}\left[\int_{y_{i-1}}^{y_i} x(v) {\mathrm d} v \right]^{\alpha-1}\exp \left\{-\beta \int_{y_{i-1}}^{y_i} x(v) {\mathrm d} v \right\}\,, {}\end{aligned} $$
(32.25)

which we use in the definition of the cumulative probability function

$$\displaystyle \begin{aligned} F_{\mathrm G}(t,y_{i-1}|x)=\int_{y_{i-1}}^t f_{\mathrm G}(s,y_{i-1}|x) {\mathrm d} s\,. \end{aligned} $$
(32.26)

Suppose now that the last Ca2+ spike occurred at time y i−1. We find the next Ca2+ spike time as y i = y i−1 + Δ, where

$$\displaystyle \begin{aligned} \varDelta=\inf \left\{t | F_{\mathrm G}(t,y_{i-1}|x)>\omega \right\}\,, \end{aligned} $$
(32.27)

and ω is a random number that is uniformly distributed between 0 and 1. To put it another way, we need to integrate the ISI probability density f G from y i−1 until we obtain a value of ω for the integral and then add the corresponding upper bound of the integral to the previous Ca2+ spike time y i−1.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Powell, J., Falcke, M., Skupin, A., Bellamy, T.C., Kypraios, T., Thul, R. (2020). A Statistical View on Calcium Oscillations. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 1131. Springer, Cham. https://doi.org/10.1007/978-3-030-12457-1_32

Download citation

Publish with us

Policies and ethics