Skip to main content

Readily Releasable Stores of Calcium in Neuronal Endolysosomes: Physiological and Pathophysiological Relevance

  • Chapter
  • First Online:
Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1131))

Abstract

Neurons are long-lived post-mitotic cells that possess an elaborate system of endosomes and lysosomes (endolysosomes) for protein quality control. Relatively recently, endolysosomes were recognized to contain high concentrations (400–600 μM) of readily releasable calcium. The release of calcium from this acidic organelle store contributes to calcium-dependent processes of fundamental physiological importance to neurons including neurotransmitter release, membrane excitability, neurite outgrowth, synaptic remodeling, and cell viability. Pathologically, disturbances of endolysosome structure and/or function have been noted in a variety of neurodegenerative disorders including Alzheimer’s disease (AD) and HIV-1 associated neurocognitive disorder (HAND). And, dysregulation of intracellular calcium has been implicated in the neuropathogenesis of these same neurological disorders. Thus, it is important to better understand mechanisms by which calcium is released from endolysosomes as well as the consequences of such release to inter-organellar signaling, physiological functions of neurons, and possible pathological consequences. In doing so, a path forward towards new therapeutic modalities might be facilitated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    CAS  PubMed  Google Scholar 

  2. Jaiswal JK (2001) Calcium – how and why? J Biosci 26(3):357–363

    Article  CAS  PubMed  Google Scholar 

  3. Case RM, Eisner D, Gurney A, Jones O, Muallem S, Verkhratsky A (2007) Evolution of calcium homeostasis: from birth of the first cell to an omnipresent signalling system. Cell Calcium 42(4–5):345–350

    Article  CAS  PubMed  Google Scholar 

  4. Wideman JG, Leung KF, Field MC, Dacks JB (2014) The cell biology of the Endocytic system from an evolutionary perspective. Cold Spring Harb Perspect Biol [Internet] 6(4):a016998. Apr 1 [cited 2018 July 16]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24478384

    Article  CAS  Google Scholar 

  5. Carafoli E (2010) The fateful encounter of mitochondria with calcium: how did it happen? Biochim Biophys Acta Bioenerg [Internet] 1797(6–7):595–606. June 1 [cited 2018 July 16]. Available from: https://www.sciencedirect.com/science/article/pii/S0005272810001301#fig1

    Article  CAS  Google Scholar 

  6. Patel S, Cai X (2015) Evolution of acidic Ca2+stores and their resident Ca2+−permeable channels [internet]. Cell Calcium 57:222–230. [cited 2018 July 14]. Available from: https://www.sciencedirect.com/science/article/pii/S0143416014002012

    Article  CAS  PubMed  Google Scholar 

  7. Raffaello A, Mammucari C, Gherardi G, Rizzuto R (2016) Calcium at the Center of Cell Signaling: interplay between endoplasmic reticulum, mitochondria, and lysosomes. Trends Biochem Sci 41:1035–1049. [cited 2017 May 17]. Available from: http://www.cell.com/trends/biochemical-sciences/pdf/S0968-0004(16)30147-5.pdf

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Christensen KA, Myers JT, JA S (2002) pH-dependent regulation of lysosomal calcium in macrophages. J Cell Sci 115(Pt 3):599–607

    CAS  PubMed  Google Scholar 

  9. Morgan AJ, Platt FM, Lloyd-Evans E, Galione A (2011) Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochem J [Internet] 439(3):349–374. Available from: http://www.biochemj.org/content/439/3/349.abstract

    Article  CAS  Google Scholar 

  10. Moreno SNJ, Docampo R (2009) The role of acidocalcisomes in parasitic protists. J Eukaryot Microbiol 56:208–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Patel S, Docampo R (2010) Acidic calcium stores open for business: expanding the potential for intracellular Ca2+signaling. Trends Cell Biol 20:277–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brailoiu E, Churamani D, Cai X, Schrlau MG, Brailoiu GC, Gao X et al (2009) Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling (a). J Cell Biol 186(2):201–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X et al (2009) NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459(7246):596–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zong X, Schieder M, Cuny H, Fenske S, Gruner C, Rötzer K et al (2009) The two-pore channel TPCN2 mediates NAADP-dependent Ca2+−release from lysosomal stores. Pflugers Arch Eur J Physiol [Internet] 458(5):891–899. Sept 26 [cited 2018 July 14]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19557428

    Article  CAS  Google Scholar 

  15. Ruas M, Rietdorf K, Arredouani A, Davis LC, Lloyd-Evans E, Koegel H et al (2010) Purified TPC isoforms form NAADP receptors with distinct roles for Ca2+signaling and Endolysosomal trafficking. Curr Biol [Internet] 8(20):703–709. Apr 27 [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20346675

    Article  CAS  Google Scholar 

  16. Schieder M, Rötzer K, Brüggemann A, Biel M, Wahl-Schott CA (2010) Characterization of two-pore channel 2 (TPCN2)-mediated Ca2+ currents in isolated lysosomes. J Biol Chem [Internet] 285(28):21219–21222. July 9 [cited 2018 July 14]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20495006

    Article  CAS  Google Scholar 

  17. Zhu MX, Ma J, Parrington J, Calcraft PJ, Galione A, Evans AM (2010) Calcium signaling via two-pore channels: local or global, that is the question. AJP Cell Physiol [Internet] 298(3):C430–C441. Available from: http://ajpcell.physiology.org/cgi/doi/10.1152/ajpcell.00475.2009

    Article  CAS  Google Scholar 

  18. Camacho M, Machado JD, Alvarez J, Borges R (2008) Intravesicular calcium release mediates the motion and exocytosis of secretory organelles: a study with adrenal chromaffin cells. J Biol Chem 283(33):22383–22389

    Article  CAS  PubMed  Google Scholar 

  19. Machado JD, Camacho M, Alvarez J, Borges R (2009) On the role of intravesicular calcium in the motion and exocytosis of secretory organelles. Commun Integr Biol 2(2):71–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Starkus JG, Fleig A, Penner R (2010) The calcium-permeable non-selective cation channel TRPM2 is modulated by cellular acidification. J Physiol 588(8):1227–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kiselyov K, Colletti GA, Terwilliger A, Ketchum K, CWP L, Quinn J et al (2011) TRPML: transporters of metals in lysosomes essential for cell survival? Cell Calcium 50:288–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cao Q, Zhong XZ, Zou Y, Murrell-Lagnado R, Zhu MX, Dong XP (2015) Calcium release through P2X4 activates calmodulin to promote endolysosomal membrane fusion. J Cell Biol 209(6):879–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haller T, Dietl P, Deetjen P, Völkl H (1996) The lysosomal compartment as intracellular calcium store in MDCK cells: a possible involvement in InsP3-mediated Ca2+release. Cell Calcium 19(2):157–165

    Article  CAS  PubMed  Google Scholar 

  24. McGuinness L, Bardo SJ, Emptage NJ (2007) The lysosome or lysosome-related organelle may serve as a Ca2+store in the boutons of hippocampal pyramidal cells. Neuropharmacology 52(1):126–135

    Article  CAS  PubMed  Google Scholar 

  25. Repnik U, Česen MH, Turk B (2013) The endolysosomal system in cell death and survival. Cold Spring Harb Perspect Biol [Internet] 5(1):a008755. Jan 1 [cited 2017 Oct 16]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23284043

    Article  CAS  Google Scholar 

  26. Ferguson SM (2018) Neuronal lysosomes. Neurosci Lett [Internet]. Available from: http://linkinghub.elsevier.com/retrieve/pii/S030439401830260X

  27. Goo MS, Sancho L, Slepak N, Boassa D, Deerinck TJ, Ellisman MH et al (2017) Activity-dependent trafficking of lysosomes in dendrites and dendritic spines. J Cell Biol 216(8):2499–2513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Galione A, Morgan AJ, Arredouani A, Davis LC, Rietdorf K, Ruas M et al (2010) NAADP as an intracellular messenger regulating lysosomal calcium-release channels. Biochem Soc Trans [Internet] 38(6):1424–1431. Available from: http://biochemsoctrans.org/lookup/doi/10.1042/BST0381424

    Article  CAS  Google Scholar 

  29. Shen D, Wang X, Li X, Zhang X, Yao Z, Dibble S et al (2012) Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat Commun 3:731

    Article  PubMed  CAS  Google Scholar 

  30. Macgregor A, Yamasaki M, Rakovic S, Sanders L, Parkesh R, Churchill GC et al (2007) NAADP controls cross-talk between distinct Ca2+ Stores in the Heart. J Biol Chem [Internet] 282(20):15302–15311. May 18 [cited 2018 July 16]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17387177

    Article  CAS  Google Scholar 

  31. Galione A, Parrington J, Funnell T (2011) Physiological roles of NAADP-mediated Ca2+ signaling. Sci China Life Sci [Internet] 54(8):725–732. Available from: http://link.springer.com/10.1007/s11427-011-4207-5

    Article  CAS  Google Scholar 

  32. Putney JW (1986) A model for receptor-regulated calcium entry. Cell Calcium 7(1):1–12

    Article  CAS  PubMed  Google Scholar 

  33. Putney JW (2009) Capacitative calcium entry: from concept to molecules. Immunol Rev 231:10–22

    Article  CAS  PubMed  Google Scholar 

  34. Hui L, Geiger NH, Bloor-Young D, Churchill GC, Geiger JD, Chen X (2015) Release of calcium from endolysosomes increases calcium influx through N-type calcium channels: evidence for acidic store-operated calcium entry in neurons. Cell Calcium [Internet] 58:617–627. [cited 2017 May 31]. Available from: http://ac.els-cdn.com/S0143416015001529/1-s2.0-S0143416015001529-main.pdf?_tid=d155fae0-460a-11e7-a743-00000aab0f02&acdnat=1496239973_5d092efe55666657b3cd6c5dc4881cf0

    Article  CAS  Google Scholar 

  35. Arredouani A, Ruas M, Collins SC, Parkesh R, Clough F, Pillinger T et al (2015) Nicotinic acid adenine dinucleotide phosphate (NAADP) and endolysosomal two-pore channels modulate membrane excitability and stimulus-secretion coupling in mouse pancreatic β cells. J Biol Chem [Internet] 290(35):21376–21392. Aug 28 [cited 2018 July 14]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26152717

    Article  CAS  Google Scholar 

  36. Moccia F, Lim D, Nusco GA, Ercolano E, Santella L (2003) NAADP activates a Ca2+ current that is dependent on F-actin cytoskeleton. FASEB J 17(13):1907–1909

    Article  CAS  PubMed  Google Scholar 

  37. Moccia F, Billington RA, Santella L (2006) Pharmacological characterization of NAADP-induced Ca2+ signals in starfish oocytes. Biochem Biophys Res Commun 348(2):329–336

    Article  CAS  PubMed  Google Scholar 

  38. Naylor E, Arredouani A, Vasudevan SR, Lewis AM, Parkesh R, Mizote A et al (2009) Identification of a chemical probe for NAADP by virtual screening. Nat Chem Biol 5(4):220–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Churchill GC, O’Neill JS, Masgrau R, Patel S, Thomas JM, Genazzani AA et al (2003) Sperm deliver a new second messenger: NAADP. Curr Biol 13(2):125–128

    Article  CAS  PubMed  Google Scholar 

  40. Yogalingam G, Bonten EJ, van de Vlekkert D, Hu H, Moshiach S, Connell SA et al (2008) Neuraminidase 1 is a negative regulator of Lysosomal exocytosis. Dev Cell 15(1):74–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li X, Rydzewski N, Hider A, Zhang X, Yang J, Wang W et al (2016) A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation. Nat Cell Biol 18(4):404–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Herrera-Cruz MS, Simmen T (2017) Over six decades of discovery and characterization of the architecture at mitochondria-associated membranes (MAMs). Adv Exp Med Biol 997:13–31

    Article  CAS  PubMed  Google Scholar 

  43. Wu Y, Whiteus C, Xu CS, Hayworth KJ, Weinberg RJ, Hess HF et al (2017) Contacts between the endoplasmic reticulum and other membranes in neurons. Proc Natl Acad Sci [Internet] 114(24):E4859–E4867. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1701078114

    Article  CAS  Google Scholar 

  44. Schon EA, Area-Gomez E (2013) Mitochondria-associated ER membranes in Alzheimer disease. Mol Cell Neurosci [Internet] 55:26–36. July [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22922446

    Article  CAS  Google Scholar 

  45. Joshi AU, Kornfeld OS, Mochly-Rosen D (2016) The entangled ER-mitochondrial axis as a potential therapeutic strategy in neurodegeneration: a tangled duo unchained. Cell Calcium 60:218–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Soto-Heredero G, Baixauli F, Mittelbrunn M (2017) Interorganelle communication between mitochondria and the Endolysosomal system. Front Cell Dev Biol [Internet] 5:95. Available from: http://journal.frontiersin.org/article/10.3389/fcell.2017.00095/full

    Article  Google Scholar 

  47. Demers-Lamarche J, Guillebaud G, Tlili M, Todkar K, Bélanger N, Grondin M et al (2016) Loss of mitochondrial function impairs lysosomes∗. J Biol Chem [Internet] 291(19):10263–10276. May 6 [cited 2017 Dec 8]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26987902

    Article  CAS  Google Scholar 

  48. Kilpatrick BS, Eden ER, Schapira AH, Futter CE, Patel S (2013) Direct mobilisation of lysosomal Ca2+ triggers complex Ca2+ signals. J Cell Sci [Internet] 126(Pt 1):60–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23108667%5Cnhttp://jcs.biologists.org/content/ joces/126/1/60.full.pdf

    Article  CAS  Google Scholar 

  49. Penny CJ, Kilpatrick BS, Eden ER, Patel S (2015) Coupling acidic organelles with the ER through Ca2+ microdomains at membrane contact sites. Cell Calcium 58:387–396

    Article  CAS  PubMed  Google Scholar 

  50. Hariri H, Ugrankar R, Liu Y, Henne WM (2016) Inter-organelle ER-endolysosomal contact sites in metabolism and disease across evolution. Communicative and Integrative Biology 9(3):e1156278

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Garrity AG, Wang W, Collier CM, Levey SA, Gao Q, Xu H (2016) The endoplasmic reticulum, not the pH gradient, drives calcium refilling of lysosomes. Elife [Internet] 5:e15887. May 23 [cited 2017 May 11]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27213518

    Article  Google Scholar 

  52. Zbidi H, Jardin I, Woodard GE, Lopez JJ, Berna-Erro A, Salido GM et al (2011) STIM1 and STIM2 are located in the acidic Ca2+ stores and associates with Orai1 upon depletion of the acidic stores in human platelets. J Biol Chem 286(14):12257–12270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kilpatrick BS, Yates E, Grimm C, Schapira AH, Patel S (2016) Endo-lysosomal TRP mucolipin-1 channels trigger global ER Ca2+ release and Ca2+ influx. J Cell Sci [Internet]. 129(20):3859–3867. [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27577094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ronco V, Potenza DM, Denti F, Vullo S, Gagliano G, Tognolina M et al (2015) A novel Ca2+−mediated cross-talk between endoplasmic reticulum and acidic organelles: implications for NAADP-dependent Ca2+signalling. Cell Calcium [Internet] 57(2):89–100. Feb 1 [cited 2018 July 14]. Available from: https://www.sciencedirect.com/science/article/pii/S0143416015000020

    Article  CAS  Google Scholar 

  55. Tate BA, Mathews PM (2006) Targeting the role of the endosome in the pathophysiology of Alzheimer’s disease: a strategy for treatment. Sci Aging Knowl Environ [Internet] 2006(10):re2–re2. June 28 [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16807486

    Google Scholar 

  56. Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH et al (2008) Autophagy induction and Autophagosome clearance in neurons: relationship to Autophagic pathology in Alzheimer’s disease. J Neurosci [Internet] 28(27):6926–6937. July 2 [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18596167

    Article  CAS  Google Scholar 

  57. Gelman BB, Soukup VM, Holzer CE 3rd, Fabian RH, Schuenke KW, Keherly MJ et al (2005) Potential role for white matter lysosome expansion in HIV-associated dementia. J Acquir Immune Defic Syndr 39(4):422–425

    Article  CAS  PubMed  Google Scholar 

  58. Spector SA, Zhou D (2008) Autophagy: an overlooked mechanism of HIV-1 pathogenesis and neuroAIDS? Autophagy [Internet] 4(5):704–706. July [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18424919

    Article  CAS  Google Scholar 

  59. Cysique LA, Hewitt T, Croitoru-Lamoury J, Taddei K, Martins RN, Chew CS et al (2015) APOE ε4 moderates abnormal CSF-abeta-42 levels, while neurocognitive impairment is associated with abnormal CSF tau levels in HIV+ individuals – a cross-sectional observational study. BMC Neurol [Internet] 15(1):51. Dec 1 [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25880550

    Article  CAS  Google Scholar 

  60. Ellis RJ, Rosario D, Clifford DB, McArthur JC, Simpson D, Alexander T et al (2010) Continued high prevalence and adverse clinical impact of human immunodeficiency virus–associated sensory neuropathy in the era of combination antiretroviral therapy. Arch Neurol [Internet] 67(5):552. May 1 [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20457954

    Article  Google Scholar 

  61. Heaton RK, Clifford DB, Franklin DR, Woods SP, Ake C, Vaida F et al (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: charter study. Neurol Int 75(23):2087–2096. Dec 7 [cited 2017 Sept 13]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21135382

    CAS  Google Scholar 

  62. Sabatier JM, Vives E, Mabrouk K, Benjouad A, Rochat H, Duval A et al (1991) Evidence for neurotoxic activity of tat from human immunodeficiency virus type 1. J Virol [Internet] 65(2):961–967. Feb [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1898974

    CAS  Google Scholar 

  63. Weeks BS, Lieberman DM, Johnson B, Roque E, Green M, Loewenstein P et al (1995) Neurotoxicity of the human immunodeficiency virus type 1 tat transactivator to PC12 cells requires the tat amino acid 49-58 basic domain. J Neurosci Res [Internet] 42(1):34–40. Sept 1 [cited 2018 July 27]. Available from: http://doi.wiley.com/10.1002/jnr.490420105

    Article  CAS  Google Scholar 

  64. Haughey NJ, Holden CP, Nath A, Geiger JD (1999) Involvement of inositol 1,4,5-trisphosphate-regulated stores of intracellular calcium in calcium dysregulation and neuron cell death caused by HIV-1 protein tat. J Neurochem [Internet] 73(4):1363–1374. Oct [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10501179

    Article  CAS  Google Scholar 

  65. Nath A, Haughey NJ, Jones M, Anderson C, Bell JE, Geiger JD (2000) Synergistic neurotoxicity by human immunodeficiency virus proteins tat and gp120: protection by memantine. Ann Neurol [Internet] 47(2):186–194. Feb [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10665489

    Article  CAS  Google Scholar 

  66. Pérez A, Probert AW, Wang KK, Sharmeen L (2001) Evaluation of HIV-1 tat induced neurotoxicity in rat cortical cell culture. J Neurovirol [Internet] 7(1):1–10. Feb 1 [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11519477

    Article  Google Scholar 

  67. King JE, Eugenin EA, Buckner CM, Berman JW (2006) HIV tat and neurotoxicity. Microbes Infect [Internet] 8(5):1347–1357. Apr [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16697675

    Article  CAS  Google Scholar 

  68. Buscemi L, Ramonet D, Geiger JD (2007) Human immunodeficiency virus type-1 protein tat induces tumor necrosis factor-alpha-mediated neurotoxicity. Neurobiol Dis [Internet] 26(3):661–670. June [cited 2018 June 1]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17451964

    Article  CAS  Google Scholar 

  69. Agrawal L, Louboutin J-P, Reyes BAS, Van Bockstaele EJ, Strayer DS (2012) HIV-1 tat neurotoxicity: a model of acute and chronic exposure, and neuroprotection by gene delivery of antioxidant enzymes. Neurobiol Dis [Internet] 45(2):657–670. Feb [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22036626

    Article  CAS  Google Scholar 

  70. Johnson TP, Patel K, Johnson KR, Maric D, Calabresi PA, Hasbun R et al (2013) Induction of IL-17 and nonclassical T-cell activation by HIV-tat protein. Proc Natl Acad Sci U S A [Internet] 110(33):13588–13593. Aug 13 [cited 2017 July 20]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23898208

    Article  CAS  Google Scholar 

  71. DSK M, Jsnudsen BE, Geiger JD, Brownstone RM, Nath A (1995) Human lmmunodehclency V m s lype 1 tat activates non-N-Methyla-aspartate excitatory ammo acid receptors and causes neurotoxicity. Ann Neurol [Internet] 37(3):373–380. [cited 2017 Nov 20]. Available from: https://med-und.illiad.oclc.org/illiad/illiad.dll?Action=10&Form=75&Value=116096

    Article  Google Scholar 

  72. Nath A, Psooy K, Martin C, Knudsen B, Magnuson DS, Haughey N et al (1996) Identification of a human immunodeficiency virus type 1 tat epitope that is neuroexcitatory and neurotoxic. J Virol [Internet] 3(70):1475–1480. [cited 2018 June 13]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC189968/pdf/701475.pdf

    Google Scholar 

  73. Haughey NJ, Mattson MP (2002) Calcium dysregulation and neuronal apoptosis by the HIV-1 proteins tat and gp120. J Acquir Immune Defic Syndr [Internet] 31(Suppl 2):S55–S61. Oct 1 [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12394783

    Article  CAS  Google Scholar 

  74. Kim HJ, Martemyanov KA, Thayer SA (2008) Human immunodeficiency virus protein tat induces synapse loss via a reversible process that is distinct from cell death. J Neurosci [Internet] 28(48):12604–12613. Nov 26 [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19036954

    Article  CAS  Google Scholar 

  75. Fitting S, Xu R, Bull C, Buch SK, El-Hage N, Nath A et al (2010) Interactive comorbidity between opioid drug abuse and HIV-1 tat: chronic exposure augments spine loss and sublethal dendritic pathology in striatal neurons. Am J Pathol [Internet] 177(3):1397–1410. Sept [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20651230

    Article  CAS  Google Scholar 

  76. Hui L, Chen X, Haughey NJ, Geiger JD (2012) Role of Endolysosomes in HIV-1 tat-induced neurotoxicity. ASN Neuro [Internet] 4(4):AN20120017. Apr 3 [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22591512

    Article  CAS  Google Scholar 

  77. Rajendran L, Annaert W (2012) Membrane trafficking pathways in Alzheimer’s disease. Traffic [Internet] 13(6):759–770. June [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22269004

    Article  CAS  Google Scholar 

  78. Morel E, Chamoun Z, Lasiecka ZM, Chan RB, Williamson RL, Vetanovetz C et al (2013) Phosphatidylinositol-3-phosphate regulates sorting and processing of amyloid precursor protein through the endosomal system. Nat Commun [Internet] 4(1):2250. Dec 2 [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23907271

    Article  CAS  Google Scholar 

  79. Jiang S, Li Y, Zhang X, Bu G, Xu H, Zhang Y (2014) Trafficking regulation of proteins in Alzheimer’s disease. Mol Neurodegener [Internet] 9:6. Jan 11 [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24410826

    Article  CAS  Google Scholar 

  80. Nixon RA (2005) Endosome function and dysfunction in Alzheimer’s disease and other neurodegenerative diseases. Neurobiol Aging [Internet] 26(3):373–382. Mar [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15639316

    Article  CAS  Google Scholar 

  81. Rajendran L, Schneider A, Schlechtingen G, Weidlich S, Ries J, Braxmeier T et al (2008) Efficient inhibition of the Alzheimer’s disease -Secretase by membrane targeting. Science (80- ) [Internet] 320(5875):520–523. Apr 25 [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18436784

    Article  CAS  Google Scholar 

  82. Shimizu H, Tosaki A, Kaneko K, Hisano T, Sakurai T, Nukina N (2008) Crystal structure of an active form of BACE1, an enzyme responsible for amyloid protein production. Mol Cell Biol [Internet] 28(11):3663–3671. June 1 [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18378702

    Article  CAS  Google Scholar 

  83. Sannerud R, Declerck I, Peric A, Raemaekers T, Menendez G, Zhou L et al (2011) ADP ribosylation factor 6 (ARF6) controls amyloid precursor protein (APP) processing by mediating the endosomal sorting of BACE1. Proc Natl Acad Sci [Internet] 108(34):E559–E568. Aug 23 [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21825135

    Article  CAS  Google Scholar 

  84. Hamano T, Gendron TF, Causevic E, Yen S-H, Lin W-L, Isidoro C et al (2008) Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression. Eur J Neurosci [Internet] 27(5):1119–1130. Mar [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18294209

    Article  Google Scholar 

  85. Chesser AS, Pritchard SM, GVW J (2013) Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease. Front Neurol [Internet] 4:122. Sept 3 [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24027553

    Google Scholar 

  86. Jo C, Gundemir S, Pritchard S, Jin YN, Rahman I, GVW J (2014) Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat Commun [Internet] 5(1):3496. Dec 25 [cited 2018 July 27]. Available from: http://www.nature.com/articles/ncomms4496

    Article  CAS  Google Scholar 

  87. Bi X, Liao G (2007) Erratum: Autophagic-lysosomal dysfunction and neurodegeneration in Niemann-pick type C mice: lipid starvation or indigestion? (autophagy) [internet]. Autophagy 3:646–648. [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17921694

    Article  CAS  PubMed  Google Scholar 

  88. Polito VA, Li H, Martini-Stoica H, Wang B, Yang L, Xu Y et al (2014) Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB. EMBO Mol Med [Internet] 6(9):1142–1160. Sept 1 [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25069841

    Article  CAS  Google Scholar 

  89. Masgrau R, Churchill GC, Morgan AJ, Ashcroft SJH (2003) Galione a. NAADP: a new second messenger for glucose-induced Ca2+ responses in clonal pancreatic beta cells. Curr Biol [Internet] 13(3):247–251. Feb 4 [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12573222

    Article  CAS  Google Scholar 

  90. Mitchell KJ, Lai FA, Rutter GA (2003) Ryanodine receptor type I and nicotinic acid adenine dinucleotide phosphate receptors mediate Ca2+ release from insulin-containing vesicles in living pancreatic β-cells (MIN6). J Biol Chem [Internet] 278(13):11057–11064. Mar 28 [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12538591

    Article  CAS  Google Scholar 

  91. Haas E, Bhattacharya I, Brailoiu E, Damjanovic M, Brailoiu GC, Gao X et al (2009) Regulatory role of G protein-coupled estrogen receptor for vascular function and obesity. Circ Res [Internet] 104(3):288–291. Feb 13 [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19179659

    Article  CAS  Google Scholar 

  92. Pandey V, Chuang C-C, Lewis AM, Aley PK, Brailoiu E, Dun NJ et al (2009) Recruitment of NAADP-sensitive acidic Ca2+ stores by glutamate. Biochem J [Internet] 422(3):503–512. Sept 15 [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19548879

    Article  CAS  Google Scholar 

  93. Dickinson GD, Churchill GC, Brailoiu E, Patel S (2010) Deviant nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca2+ signaling upon lysosome proliferation. J Biol Chem [Internet] 285(18):13321–13325. Apr 30 [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20231291

    Article  CAS  Google Scholar 

  94. Rempel HC, Pulliam L (2005) HIV-1 tat inhibits neprilysin and elevates amyloid β. AIDS [Internet] 19(2):127–135. Jan 28 [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15668537

    Article  CAS  Google Scholar 

  95. Giunta B, Hou H, Zhu Y, Rrapo E, Tian J, Takashi M et al (2009) HIV-1 tat contributes to Alzheimer’s disease-like pathology in PSAPP mice. Int J Clin Exp Pathol [Internet] 5(2):433–443. [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19294002

    Google Scholar 

  96. Aksenov MY, Aksenova MV, Mactutus CF, Booze RM (2010) HIV-1 protein-mediated amyloidogenesis in rat hippocampal cell cultures. Neurosci Lett [Internet] 475(3):174–178. May 21 [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20363291

    Article  CAS  Google Scholar 

  97. Chen X, Hui L, Geiger NH, Haughey NJ, Geiger JD (2013) Endolysosome involvement in HIV-1 transactivator protein-induced neuronal amyloid beta production. Neurobiol Aging [Internet] 34(10):2370–2378. Oct [cited 2017 Aug 8]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23673310

    Article  CAS  Google Scholar 

  98. Kim J, Yoon JH, Kim YS (2013) HIV-1 tat interacts with and regulates the localization and processing of amyloid precursor protein. Chauhan A, editor. PLoS One [Internet] 8(11):e77972. Nov 29 [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24312169

    Article  CAS  Google Scholar 

  99. Fields JA, Dumaop W, Crews L, Adame A, Spencer B, Metcalf J et al (2015) Mechanisms of HIV-1 tat neurotoxicity via CDK5 translocation and hyper-activation: role in HIV-associated neurocognitive disorders. Curr HIV Res [Internet] 13(1):43–54. [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25760044

    Article  CAS  Google Scholar 

  100. Liu Y, Jones M, Hingtgen CM, Bu G, Laribee N, Tanzi RE et al (2000) Uptake of HIV-1 tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat Med [Internet] 6(12):1380–1387. Dec 1 [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11100124

    Article  CAS  Google Scholar 

  101. Deshmane SL, Mukerjee R, Fan S, Sawaya BE (2011) High-performance capillary electrophoresis for determining HIV-1 tat protein in neurons. Kashanchi F, editor. PLoS One [Internet] 6(1):e16148. Jan 7 [cited 2018 July 27]. Available from: http://dx.plos.org/10.1371/journal.pone.0016148

    Article  CAS  Google Scholar 

  102. Vendeville A, Rayne F, Bonhoure A, Bettache N, Montcourrier P, Beaumelle B (2004) HIV-1 tat enters T cells using coated pits before translocating from acidified endosomes and eliciting biological responses. Mol Biol Cell [Internet] 15(5):2347–2360. May [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15020715

    Article  CAS  Google Scholar 

  103. Mangieri LR, Mader BJ, Thomas CE, Taylor CA, Luker AM, Tse TE et al (2014) ATP6V0C knockdown in Neuroblastoma cells alters autophagy-lysosome pathway function and metabolism of proteins that accumulate in neurodegenerative disease. Srinivasula SM, editor. PLoS One [Internet] 9(4):e93257. Apr 2 [cited 2018 July 27]. Available from: http://dx.plos.org/10.1371/journal.pone.0093257

    Article  CAS  Google Scholar 

  104. Bendiske J, Caba E, Brown QB, Bahr BA (2002) Intracellular deposition, microtubule destabilization, and transport failure: an “early” pathogenic Cascade leading to synaptic decline. J Neuropathol Exp Neurol [Internet] 61(7):640–650. July 1 [cited 2018 July 27]. Available from: https://academic.oup.com/jnen/article-lookup/doi/10.1093/jnen/61.7.640

    Article  CAS  Google Scholar 

  105. Bendiske J, Bahr BA (2003) Lysosomal activation is a compensatory response against protein accumulation and associated synaptopathogenesis--an approach for slowing Alzheimer disease? J Neuropathol Exp Neurol [Internet] 62(5):451–463. May [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12769185

    Article  CAS  Google Scholar 

  106. Kanju PM, Parameshwaran K, Vaithianathan T, Sims CM, Huggins K, Bendiske J et al (2007) Lysosomal dysfunction produces distinct alterations in synaptic alpha-amino-3-hydroxy-5-methylisoxazolepropionic acid and N-methyl-D-aspartate receptor currents in hippocampus. J Neuropathol Exp Neurol [Internet] 66(9):779–788. Sept [cited 2018 July 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17805008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding provided by the NIH for our work; P30GM103329, R01MH100972, R01MH105329, R01MH119000, R01NS065957, and R01DA032444.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Geiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lakpa, K.L., Halcrow, P.W., Chen, X., Geiger, J.D. (2020). Readily Releasable Stores of Calcium in Neuronal Endolysosomes: Physiological and Pathophysiological Relevance. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 1131. Springer, Cham. https://doi.org/10.1007/978-3-030-12457-1_27

Download citation

Publish with us

Policies and ethics