Skip to main content

Sarco-Endoplasmic Reticulum Calcium Release Model Based on Changes in the Luminal Calcium Content

  • Chapter
  • First Online:
Calcium Signaling

Abstract

The sarcoplasmic/endoplasmic reticulum (SR/ER) is the main intracellular calcium (Ca2+) pool in muscle and non-muscle eukaryotic cells, respectively. The reticulum accumulates Ca2+ against its electrochemical gradient by the action of sarco/endoplasmic reticulum calcium ATPases (SERCA pumps), and the capacity of this Ca2+ store is increased by the presence of Ca2+ binding proteins in the lumen of the reticulum. A diversity of physical and chemical signals, activate the main Ca2+ release channels, i.e. ryanodine receptors (RyRs) and inositol (1, 4, 5) trisphosphate receptors (IP3Rs), to produce transient elevations of the cytoplasmic calcium concentration ([Ca2+]i) while the reticulum is being depleted of Ca2+. This picture is incomplete because it implies that the elements involved in the Ca2+ release process are acting alone and independently of each other. However, it appears that the Ca2+ released by RyRs and IP3Rs is trapped in luminal Ca2+ binding proteins (Ca2+ lattice), which are associated with these release channels, and the activation of these channels appears to facilitate that the trapped Ca2+ ions become available for release. This situation makes the initial stage of the Ca2+ release process a highly efficient one; accordingly, there is a large increase in the [Ca2+]i with minimal reductions in the bulk of the free luminal SR/ER [Ca2+] ([Ca2+]SR/ER). Additionally, it has been shown that active SERCA pumps are required for attaining this highly efficient Ca2+ release process. All these data indicate that Ca2+ release by the SR/ER is a highly regulated event and not just Ca2+ coming down its electrochemical gradient via the open release channels. One obvious advantage of this sophisticated Ca2+ release process is to avoid depletion of the ER Ca2+ store and accordingly, to prevent the activation of ER stress during each Ca2+ release event.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529

    Article  CAS  PubMed  Google Scholar 

  2. Clapham DE (2007) Calcium signaling. Cell 131(6):1047–1058

    Article  CAS  PubMed  Google Scholar 

  3. Zhivotovsky B, Orrenius S (2011) Calcium and cell death mechanisms: a perspective from the cell death community. Cell Calcium 50(3):211–221

    Article  CAS  PubMed  Google Scholar 

  4. Yanez M, Gil-Longo J, Campos-Toimil M (2012) Calcium binding proteins. In: Calcium signaling. Springer, Dordrecht, pp 461–482

    Chapter  Google Scholar 

  5. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1(1):11–21

    Article  CAS  PubMed  Google Scholar 

  6. Tombal B, Denmeade SR, Gillis JM, Isaacs JT (2002) A supramicromolar elevation of intracellular free calcium ([Ca2+]i) is consistently required to induce the execution phase of apoptosis. Cell Death Differ 9(5):561–573

    Article  CAS  PubMed  Google Scholar 

  7. Verkhratsky A (2005) Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 85(1):201–279

    Article  CAS  PubMed  Google Scholar 

  8. Rizzuto R, Marchi S, Bonora M, Aguiari P, Bononi A, De Stefani D et al (2009) Ca2+ transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta Bioenerg 1787(11):1342–1351

    Article  CAS  Google Scholar 

  9. Llopis J, McCaffery JM, Miyawaki A, Farquhar MG, Tsien RY (1998) Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci U S A 95(12):6803–6808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gallegos-Gómez M-L, Greotti E, López-Méndez M-C, Sánchez-Vázquez V-H, Arias J-M, Guerrero-Hernández A (2018) The trans golgi region is a labile intracellular Ca2+ store sensitive to emetine. Sci Rep 8(1):17143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Garrity AG, Wang W, Collier CMD, Levey SA, Gao Q, Xu H (2016) The endoplasmic reticulum, not the pH gradient, drives calcium refilling of lysosomes. elife 5:e15887

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dickson EJ, Duman JG, Moody MW, Chen L, Hille B (2012) Orai-STIM-mediated Ca2+ release from secretory granules revealed by a targeted Ca2+ and pH probe. Proc Natl Acad Sci U S A 109(51):E3539–E3548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pezzati R, Bossi M, Podini P, Meldolesi J, Grohovaz F (1997) High-resolution calcium mapping of the endoplasmic reticulum-Golgi-exocytic membrane system. Electron energy loss imaging analysis of quick frozen-freeze dried PC12 cells. Mol Biol Cell 8(8):1501–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yagodin S, Pivovarova NB, Andrews SB, Sattelle DB (1999) Functional characterization of thapsigargin and agonist-insensitive acidic Ca2+ stores in Drosophila melanogaster S2 cell lines. Cell Calcium 25(6):429–438

    Article  CAS  PubMed  Google Scholar 

  15. Fasolato C, Zottinis M, Clementis E, Zacchettis D, Meldolesi J, Pozzan T (1991) Intracellular Ca2+ pools in PC12 cells. J Biol Chem 266(30):20159–20167

    CAS  PubMed  Google Scholar 

  16. Phillips MJ, Voeltz GK (2016) Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol 17(2):69–82

    Article  CAS  PubMed  Google Scholar 

  17. Voeltz GK, Rolls MM, Rapoport TA (2002) Structural organization of the endoplasmic reticulum. EMBO Rep 3(10):944–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shibata Y, Voeltz GK, Rapoport TA (2006) Rough sheets and smooth tubules. Cell 126(3):435–439

    Article  CAS  PubMed  Google Scholar 

  19. Park MK, Petersen OH, Tepikin AV (2000) The endoplasmic reticulum as one continuous Ca2+ pool: visualization of rapid Ca2+ movements and equilibration. EMBO J 19(21):5729–5739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bers DM, Shannon TR (2013) Calcium movements inside the sarcoplasmic reticulum of cardiac myocytes. J Mol Cell Cardiol 58(1):59–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jones VC, Rodríguez JJ, Verkhratsky A, Jones OT (2009) A lentivirally delivered photoactivatable GFP to assess continuity in the endoplasmic reticulum of neurones and glia. Pflugers Arch Eur J Physiol 458(4):809–818

    Article  CAS  Google Scholar 

  22. Friedman JR, Webster BM, Mastronarde DN, Verhey KJ, Voeltz GK (2010) ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules. J Cell Biol 190(3):363–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guo Y, Li D, Zhang S, Lippincott-schwartz J, Betzig E, Guo Y et al (2018) Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond resource visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell 175:1430–1442

    Article  CAS  PubMed  Google Scholar 

  24. Shim S-H, Xia C, Zhong G, Babcock HP, Vaughan JC, Huang B et al (2012) Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc Natl Acad Sci 109(35):13978–13983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hernández-Ochoa EO, Schneider MF (2018) Voltage sensing mechanism in skeletal muscle excitation-contraction coupling: coming of age or midlife crisis? Skelet Muscle 8(1):22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Sweeney HL, Hammers DW (2018) Muscle contraction. Cold Spring Harb Perspect Biol 10(2):a023200

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Zarain-Herzberg A, García-Rivas G, Estrada-Avilés R (2014) Regulation of SERCA pumps expression in diabetes. Cell Calcium 56(5):302–310

    Article  CAS  PubMed  Google Scholar 

  28. Toyoshima C, Inesi G (2004) Structural basis of ion pumping by Ca2+-ATPase of the sarcoplasmic reticulum. Annu Rev Biochem 73:269–292

    Article  CAS  PubMed  Google Scholar 

  29. Toyoshima C, Nomura H, Tsuda T (2004) Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues. Nature 432(7015):361–368

    Article  CAS  PubMed  Google Scholar 

  30. Dyla M, Terry DS, Kjaergaard M, Sørensen TLM, Andersen JL, Andersen JP et al (2017) Dynamics of P-type ATPase transport revealed by single-molecule FRET. Nature 551(7680):346–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mejía-Alvarez R, Kettlun C, Ríos E, Stern M, Fill M (1999) Unitary Ca2+ current through cardiac ryanodine receptor channels under quasi-physiological ionic conditions. J Gen Physiol 113(2):177–186

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ikeda K, Kang Q, Yoneshiro T, Camporez JP, Maki H, Homma M et al (2017) UCP1-independent signaling involving SERCA2b mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat Med 23(12):1454–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. De Meis L, Arruda AP, Carvalho DP (2005) Role of sarco/endoplasmic reticulum Ca2+-ATPase in thermogenesis. Biosci Rep 25(3–4):181–190

    Article  CAS  PubMed  Google Scholar 

  34. Fruen BR, Mickelson JR, Louis CF (1997) Dantrolene inhibition of sarcoplasmic reticulum Ca2+ release by direct and specific action at skeletal muscle ryanodine receptors. J Biol Chem 272(43):26965–26971

    Article  CAS  PubMed  Google Scholar 

  35. Bal NC, Maurya SK, Sopariwala DH, Sahoo SK, Gupta SC, Shaikh SA et al (2012) Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat Med 18(10):1575–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bhupathy P, Babu GJ, Periasamy M (2007) Sarcolipin and phospholamban as regulatos of cardiac sarcoplasmic reticulum Ca2+ ATPase. J Mol Cell Cardiol 42(5):903–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Anderson DM, Makarewich CA, Anderson KM, Shelton JM, Bezprozvannaya S, Bassel-Duby R et al (2016) Widespread control of calcium signaling by a family of SERCA-inhibiting micropeptides. Sci Signal 9(457):ra119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Dettbarn C, Palade P (1998) Effects of three sarcoplasmic/endoplasmic reticulum Ca++ pump inhibitors on release channels of intracellular stores. J Pharmacol Exp Ther 285(2):739–745

    CAS  PubMed  Google Scholar 

  39. Chen J, De Raeymaecker J, Hovgaard JB, Smaardijk S, Vandecaetsbeek I, Wuytack F et al (2017) Structure/activity relationship of thapsigargin inhibition on the purified golgi/secretory pathway Ca2+/Mn2+−transport ATPase (SPCA1a). J Biol Chem 292(17):6938–6951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gustavo Vazquez-Jimenez J, Chavez-Reyes J, Romero-Garcia T, Zarain-Herzberg A, Valdes-Flores J, Manuel Galindo-Rosales J et al (2016) Palmitic acid but not palmitoleic acid induces insulin resistance in a human endothelial cell line by decreasing SERCA pump expression. Cell Signal 28(1):53–59

    Article  CAS  PubMed  Google Scholar 

  41. Nelson BR, Makarewich CA, Anderson DM, Winders BR, Troupes CD, Wu F et al (2016) Muscle physiology: a peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science 351(6270):271–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fill M, Copello JA (2002) Ryanodine receptor calcium release channels. Physiol Rev 82(4):893–922

    Article  CAS  PubMed  Google Scholar 

  43. Mikoshiba K (2015) Role of IP3 receptor signaling in cell functions and diseases. Adv Biol Regul 57:217–227

    Article  CAS  PubMed  Google Scholar 

  44. Seo M-D, Velamakanni S, Ishiyama N, Stathopulos PB, Rossi AM, Khan SA et al (2012) Structural and functional conservation of key domains in InsP3 and ryanodine receptors. Nature 483(7387):108–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Meissner G (2004) Molecular regulation of cardiac ryanodine receptor ion channel. Cell Calcium 35(6):621–628

    Article  CAS  PubMed  Google Scholar 

  46. Foskett JK, White C, Cheung K, Mak DD (2007) Inositol trisphosphate receptor Ca2+ release channels. Am Physiol Soc 87:593–658

    CAS  Google Scholar 

  47. Meissner G (2017) The structural basis of ryanodine receptor ion channel function. J Gen Physiol 149(12):1065–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Scriven DRL, Dan P, Moore EDW (2000) Distribution of proteins implicated in excitation-contraction coupling in rat ventricular myocytes. Biophys J 79(5):2682–2691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bers DM (2002) Cardiac excitation–contraction coupling. Nature 415(6868):198–205

    Article  CAS  PubMed  Google Scholar 

  50. Clark JH, Kinnear NP, Kalujnaia S, Cramb G, Fleischer S, Jeyakumar LH et al (2010) Identification of functionally segregated sarcoplasmic reticulum calcium stores in pulmonary arterial smooth muscle. J Biol Chem 285(18):13542–13549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ et al (1995) Relaxation of arterial smooth muscle by calcium sparks. Science 270(5236):633–637

    Article  CAS  PubMed  Google Scholar 

  52. Kirber MT, Guerrero-Hernández A, Bowman DS, Fogarty KE, Tuft RA, Singer JJ et al (2000) Multiple pathways responsible for the stretch-induced increase in Ca2+ concentration in toad stomach smooth muscle cells. J Physiol 524(1):3–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kotlikoff MI (2003) Calcium-induced calcium release in smooth muscle: the case for loose coupling. Prog Biophys Mol Biol 83(3):171–191

    Article  CAS  PubMed  Google Scholar 

  54. van der Wal J, Habets R, Várnai P, Balla T, Jalink K, Varnai P et al (2001) Monitoring agonist-induced phospholipase C activation in live cells by fluorescence resonance energy transfer. J Biol Chem 276(18):15337–15344

    Article  PubMed  Google Scholar 

  55. Dickson EJ, Falkenburger BH, Hille B (2013) Quantitative properties and receptor reserve of the IP3 and calcium branch of G(q)-coupled receptor signaling. J Gen Physiol 141(5):521–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Baker MR, Fan G, Serysheva II (2017) Structure of IP3R channel: high-resolution insights from cryo-EM. Curr Opin Struct Biol 46:38–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Choe CU, Ehrlich BE (2006) The inositol 1,4,5-trisphosphate receptor (IP3R) and its regulators: sometimes good and sometimes bad teamwork. Sci STKE 2006(363):re15

    Article  PubMed  Google Scholar 

  58. Royer L, Ríos E (2009) Deconstructing calsequestrin. Complex buffering in the calcium store of skeletal muscle. J Physiol 587(13):3101–3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ikemoto N, Ronjat M, Meszaros LG, Koshita M (1989) Postulated role of calsequestrin in the regulation of calcium release from sarcoplasmic reticulum. Biochemistry 28(16):6764–6771

    Article  CAS  PubMed  Google Scholar 

  60. Terentyev D, Kubalova Z, Valle G, Nori A, Vedamoorthyrao S, Terentyeva R et al (2008) Modulation of SR Ca release by luminal Ca and calsequestrin in cardiac myocytes: effects of CASQ2 mutations linked to sudden cardiac death. Biophys J 95(4):2037–2048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M (2009) Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J 417(3):651–666

    Article  CAS  PubMed  Google Scholar 

  62. Park H, Park IY, Kim E, Youn B, Fields K, Dunker AK et al (2004) Comparing skeletal and cardiac calsequestrin structures and their calcium binding: a proposed mechanism for coupled calcium binding and protein polymerization. J Biol Chem 279(17):18026–18033

    Article  CAS  PubMed  Google Scholar 

  63. Arnaudeau S, Frieden M, Nakamura K, Castelbou C, Michalak M, Demaurex N (2002) Calreticulin differentially modulates calcium uptake and release in the endoplasmic reticulum and mitochondria. J Biol Chem 277(48):46696–46705

    Article  CAS  PubMed  Google Scholar 

  64. Pozzo-Miller LD, Connor JA, Andrews B (2000) Microheterogeneity of calcium signalling in dendrites. J Physiol 525(1):53–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pozzo-Miller LD, Pivovarova NB, Connor JA, Reese TS, Andrews SB (1999) Correlated measurements of free and total intracellular calcium concentration in central nervous system neurons. Microsc Res Tech 46(6):370–379

    Article  CAS  PubMed  Google Scholar 

  66. Papp S, Dziak E, Michalak M, Opas M (2003) Is all of the endoplasmic reticulum created equal? The effects of the heterogeneous distribution of endoplasmic reticulum Ca2+-handling proteins. J Cell Biol 160(4):475–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Handhle A, Ormonde CE, Thomas NL, Bralesford C, Williams AJ, Lai FA et al (2016) Calsequestrin interacts directly with the cardiac ryanodine receptor luminal domain. J Cell Sci 129:3983–3988

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang Y, Li X, Duan H, Fulton TR, Eu JP, Meissner G (2009) Altered stored calcium release in skeletal myotubes deficient of triadin and junctin. Cell Calcium 45(1):29–37

    Article  CAS  PubMed  Google Scholar 

  69. Qin J, Valle G, Nani A, Nori A, Rizzi N, Priori SG et al (2008) Luminal Ca2+ regulation of single cardiac ryanodine receptors: insights provided by Calsequestrin and its mutants. J Gen Physiol 131(4):325–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Terentyev D, Viatchenko-Karpinski S, Gyorke I, Volpe P, Williams SC, Gyorke S (2003) Calsequestrin determines the functional size and stability of cardiac intracellular calcium stores: mechanism for hereditary arrhythmia. Proc Natl Acad Sci 100(20):11759–11764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wray S, Burdyga T (2010) Sarcoplasmic reticulum function in smooth muscle. Physiol Rev 90(1):113–178

    Article  CAS  PubMed  Google Scholar 

  72. Laver DR (2007) Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites. Biophys J 92(10):3541–3555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Laver DR, Kong CHT, Imtiaz MS, Cannell MB (2013) Termination of calcium-induced calcium release by induction decay: an emergent property of stochastic channel gating and molecular scale architecture. J Mol Cell Cardiol 54(1):98–100

    Article  CAS  PubMed  Google Scholar 

  74. Cannell MB, Kong CHT, Imtiaz MS, Laver DR (2013) Control of sarcoplasmic reticulum Ca2+ release by stochastic RyR gating within a 3D model of the cardiac dyad and importance of induction decay for CICR termination. Biophys J 104(10):2149–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wu X, Bers DM (2006) Sarcoplasmic reticulum and nuclear envelope are one highly interconnected Ca2+ store throughout cardiac myocyte. Circ Res 99(3):283–291

    Article  CAS  PubMed  Google Scholar 

  76. Murphy RM, Mollica JP, Beard NA, Knollmann BC, Lamb GD (2011) Quantification of calsequestrin 2 (CSQ2) in sheep cardiac muscle and Ca2+-binding protein changes in CSQ2 knockout mice. Am J Physiol Heart Circ Physiol 300(2):H595–H604

    Article  CAS  PubMed  Google Scholar 

  77. Ikemoto N, Antoniu B, Kang JJ, Mészáros LG, Ronjat M (1991) Intravesicular calcium transient during calcium release from sarcoplasmic reticulum. Biochemistry 30(21):5230–5237

    Article  CAS  PubMed  Google Scholar 

  78. Yamaguchi N, Igami K, Kasai M (1997) Kinetics of depolarization-induced calcium release from skeletal muscle triads in vitro. J Biochem 121(3):432–439

    Article  CAS  PubMed  Google Scholar 

  79. Gomez-Viquez L, Rueda A, Garcia U, Guerrero-Hernandez A (2005) Complex effects of ryanodine on the sarcoplasmic reticulum Ca2+ levels in smooth muscle cells. Cell Calcium 38:121–130

    Article  CAS  PubMed  Google Scholar 

  80. Rueda A, García L, Guerrero-Hernández A (2002) Luminal Ca2+ and the activity of sarcoplasmic reticulum Ca2+ pumps modulate histamine-induced all-or-none Ca2+ release in smooth muscle cells. Cell Signal 14(6):517–527

    Article  CAS  PubMed  Google Scholar 

  81. Inesi G, Tadini-Buoninsegni F (2014) Ca2+/H+ exchange, lumenal Ca2+ release and Ca2+/ATP coupling ratios in the sarcoplasmic reticulum ATPase. J Cell Commun Signal 8(1):5–11

    Article  PubMed  Google Scholar 

  82. Saiki Y, Ikemoto N (1999) Coordination between Ca2+ release and subsequent re-uptake in the sarcoplasmic reticulum. Biochemistry 38(10):3112–3119

    Article  CAS  PubMed  Google Scholar 

  83. Saiki Y, Ikemoto N (1997) Fluorescence probe study of the lumenal Ca2+of the sarcoplasmic reticulum vesicles during Ca2+ uptake and Ca2+ release. Biochem Biophys Res Commun 241(1):181–186

    Article  CAS  PubMed  Google Scholar 

  84. Mészáros LG, Ikemoto N (1989) Non-identical behavior of the Ca2+-ATPase in the terminal cisternae and the longitudinal tubules fractions of sarcoplasmic reticulum. Eur J Biochem 186(3):677–681

    Article  PubMed  Google Scholar 

  85. Yano M, Yamamoto T, Ikemoto N, Matsuzaki M (2005) Abnormal ryanodine receptor function in heart failure. Pharmacol Ther 107(3):377–391

    Article  CAS  PubMed  Google Scholar 

  86. Mészáros LG, Ikemoto N (1985) Conformational changes of the Ca2+-ATPase as early events of Ca2+ release from sarcoplasmic reticulum. J Biol Chem 260(30):16076–16079

    PubMed  Google Scholar 

  87. Ikemoto N, Yamamoto T (2000) The luminal Ca2+ transient controls Ca2+ release/re-uptake of sarcoplasmic reticulum. Biochem Biophys Res Commun 279(3):858–863

    Article  CAS  PubMed  Google Scholar 

  88. Guerrero A, Singer JJ, Fay FS (1994) Simultaneous measurement of Ca2+ release and influx into smooth muscle cells in response to caffeine. A novel approach for calculating the fraction of current carried by calcium. J Gen Physiol 104(2):395–422

    Article  CAS  PubMed  Google Scholar 

  89. Gómez-Viquez L, Guerrero-Serna G, García U, Guerrero-Hernández A (2003) SERCA pump optimizes Ca2+ release by a mechanism independent of store filling in smooth muscle cells. Biophys J 85(1):370–380

    Article  PubMed  PubMed Central  Google Scholar 

  90. Hofer AM, Machen TE (1993) Technique for in situ measurement of calcium in intracellular inositol 1,4,5-trisphosphate-sensitive stores using the fluorescent indicator mag-fura-2 (gastric glands/thapsigargin/heparin). Proc Natl Acad Sci 90(April):2598–2602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shmigol AV, Eisner DA, Wray S (2001) Simultaneous measurements of changes in sarcoplasmic reticulum and cytosolic [Ca2+] in rat uterine smooth muscle cells. J Physiol 531(1):707–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Navas-Navarro P, Rojo-Ruiz J, Rodriguez-Prados M, Ganfornina MD, Looger LL, Alonso MT et al (2016) GFP-aequorin protein sensor for ex vivo and in vivo imaging of Ca2+ dynamics in high-Ca2+ organelles. Cell Chem Biol 23(6):738–745

    Article  CAS  PubMed  Google Scholar 

  93. Barrero MJ, Montero M, Alvarez J (1997) Dynamics of [Ca2+] in the endoplasmic reticulum and cytoplasm of intact HeLa cells: a comparative study. J Biol Chem 272(44):27694–27699

    Article  CAS  PubMed  Google Scholar 

  94. Palmer AE, Jin C, Reed JC, Tsien RY (2004) Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc Natl Acad Sci 101(50):17404–17409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dagnino-Acosta A, Guerrero-Hernández A (2009) Variable luminal sarcoplasmic reticulum Ca2+ buffer capacity in smooth muscle cells. Cell Calcium 46(3):188–196

    Article  CAS  PubMed  Google Scholar 

  96. Guerrero-Hernandez A, Dagnino-Acosta A, Verkhratsky A (2010) An intelligent sarco-endoplasmic reticulum Ca2+ store: release and leak channels have differential access to a concealed Ca2+ pool. Cell Calcium 48(2–3):143–149

    Article  CAS  PubMed  Google Scholar 

  97. Launikonis BS, Zhou J, Royer L, Shannon TR, Brum G, Ríos E (2006) Depletion “skraps” and dynamic buffering inside the cellular calcium store. Proc Natl Acad Sci U S A 103(8):2982–2987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shmygol A, Wray S (2005) Modulation of agonist-induced Ca2+ release by SR Ca2+ load: direct SR and cytosolic Ca2+ measurements in rat uterine myocytes. Cell Calcium 37(3):215–223

    Article  CAS  PubMed  Google Scholar 

  99. Missiaen L, Van Acker K, Van Baelen K, Raeymaekers L, Wuytack F, Parys JB et al (2004) Calcium release from the Golgi apparatus and the endoplasmic reticulum in HeLa cells stably expressing targeted aequorin to these compartments. Cell Calcium 36(6):479–487

    Article  CAS  PubMed  Google Scholar 

  100. Ishii K, Hirose K, Iino M (2006) Ca2+ shuttling between endoplasmic reticulum and mitochondria underlying Ca2+ oscillations. EMBO Rep 7(4):390–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Brochet DXP, Yang D, Di Maio A, Lederer WJ, Franzini-Armstrong C, Cheng H (2005) Ca2+ blinks: rapid nanoscopic store calcium signaling. Proc Natl Acad Sci U S A 102(8):3099–3104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zima AV, Picht E, Bers DM, Blatter LA (2008) Termination of cardiac Ca2+ sparks: role of intra-SR [Ca2+], release flux, and intra-SR Ca2+ diffusion. Circ Res 103(8):e105–e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Maxwell JT, Blatter LA (2012) Facilitation of cytosolic calcium wave propagation by local calcium uptake into the sarcoplasmic reticulum in cardiac myocytes. J Physiol 590:6037–6045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Maxwell JT, Blatter LA (2017) A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca2+ during excitation–contraction coupling in atrial myocytes. J Physiol 595(12):3835–3845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Keller M, Kao JPY, Egger M, Niggli E (2007) Calcium waves driven by “sensitization” wave-fronts. Cardiovasc Res 74(1):39–45

    Article  CAS  PubMed  Google Scholar 

  106. Rodriguez-Garcia A, Rojo-Ruiz J, Navas-Navarro P, Aulestia FJ, Gallego-Sandin S, Garcia-Sancho J et al (2014) GAP, an aequorin-based fluorescent indicator for imaging Ca2+ in organelles. Proc Natl Acad Sci U S A 111(7):2584–2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Greotti E, Wong A, Pozzan T, Pendin D, Pizzo P (2016) Characterization of the ER-targeted low affinity Ca2+ probe D4ER. Sensors 16(9):1–13

    Article  CAS  Google Scholar 

  108. Baddeley D, Crossman D, Rossberger S, Cheyne JE, Montgomery JM, Jayasinghe ID et al (2011) 4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues. PLoS One 6(5):e20645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Perez-Rosas NC, Gomez-Viquez NL, Dagnino-Acosta A, Santillan M, Guerrero-Hernandez A (2015) Kinetics on demand is a simple mathematical solution that fits recorded caffeine-induced luminal SR Ca2+ changes in smooth muscle cells. PLoS One 10(9):e0138195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Suzuki J, Kanemaru K, Ishii K, Ohkura M, Okubo Y, Iino M (2014) Imaging intraorganellar Ca2+ at subcellular resolution using CEPIA. Nat Commun 5:4153

    Article  CAS  PubMed  Google Scholar 

  111. Manno C, Ríos E (2015) A better method to measure total calcium in biological samples yields immediate payoffs. J Gen Physiol 145(3):167–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Györke I, Hester N, Jones LR, Györke S (2004) The role of calsequestrin, triadin, and junctin conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys J 86(4):2121–2128

    Article  PubMed  PubMed Central  Google Scholar 

  113. Gómez-Viquez NL, Guerrero-Serna G, Arvizu F, García U, Guerrero-Hernández A (2010) Inhibition of SERCA pumps induces desynchronized RyR activation in overloaded internal Ca2+ stores in smooth muscle cells. Am J Physiol Cell Physiol 298(5):C1038–C1046

    Article  PubMed  CAS  Google Scholar 

  114. Song XW, Tang Y, Lei CH, Cao M, Shen YF, Yang YJ (2016) In situ visualizing T-tubule/SR junction reveals the ultra-structures of calcium storage and release machinery. Int J Biol Macromol 82:7–12

    Article  CAS  PubMed  Google Scholar 

  115. Cifuentes ME, Ronjat M, Ikemoto N (1989) Polylysine induces a rapid Ca2+ release from sarcoplasmic reticulum vesicles by mediation of its binding to the foot protein. Arch Biochem Biophys 273(2):554–561

    Article  CAS  PubMed  Google Scholar 

  116. El-Hayekt R, Yano M, Ikemoto N (1995) A conformational change in the junctional foot protein is involved in the regulation of Ca2+ release from sarcoplasmic reticulum: studies on polylysine-induced Ca2+ release. J Biol Chem 270(26):15634–15638

    Article  Google Scholar 

  117. Rueda A, García L, Soria-Jasso LE, Arias-Montaño JA, Guerrero-Hernández A (2002) The initial inositol 1,4,5-trisphosphate response induced by histamine is strongly amplified by Ca2+ release from internal stores in smooth muscle. Cell Calcium 31(4):161–173

    Article  CAS  PubMed  Google Scholar 

  118. Bers DM, Eisner DA, Valdivia HH (2003) Sarcoplasmic reticulum Ca2+ and heart failure. Circ Res 93(6):487–490

    Article  CAS  PubMed  Google Scholar 

  119. Park SW, Zhou Y, Lee J, Lee J, Ozcan U (2010) Sarco(endo)plasmic reticulum Ca2+-ATPase 2b is a major regulator of endoplasmic reticulum stress and glucose homeostasis in obesity. Proc Natl Acad Sci U S A 107(45):19320–19325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sammels E, Parys JB, Missiaen L, De Smedt H, Bultynck G (2010) Intracellular Ca2+ storage in health and disease: a dynamic equilibrium. Cell Calcium 47(4):297–314

    Article  CAS  PubMed  Google Scholar 

  121. Fu S, Watkins SM, Hotamisligil GS (2012) The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab 15(5):623–634

    Article  CAS  PubMed  Google Scholar 

  122. Allen DG, Lamb GD, Westerblad H (2007) Impaired calcium release during fatigue. J Appl Physiol 104(1):296–305

    Article  PubMed  CAS  Google Scholar 

  123. Manno C, Figueroa LC, Gillespie D, Fitts R, Kang C, Franzini-Armstrong C et al (2017) Calsequestrin depolymerizes when calcium is depleted in the sarcoplasmic reticulum of working muscle. Proc Natl Acad Sci 114(4):E638–E647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Aguilar-Maldonado B, Gómez-Viquez L, García L, Del Angel RM, Arias-Montaño JA, Guerrero-Hernández A (2003) Histamine potentiates IP3-mediated Ca2+ release via thapsigargin-sensitive Ca2+ pumps. Cell Signal 15(7):689–697

    Article  CAS  PubMed  Google Scholar 

  125. Wang X, Huang G, Luo X, Penninger JM, Muallem S (2004) Role of regulator of G protein signaling 2 (RGS2) in Ca2+ oscillations and adaptation of Ca2+ signaling to reduce excitability of RGS2−/− cells. J Biol Chem 279(40):41642–41649

    Article  CAS  PubMed  Google Scholar 

  126. Rowland AA, Voeltz GK (2012) Endoplasmic reticulum–mitochondria contacts: function of the junction. Nat Rev Mol Cell Biol 13(10):607–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Csordás G, Renken C, Várnai P, Walter L, Weaver D, Buttle KF et al (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174(7):915–921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Montisano D, Cascarano J, Pickett C, James T (1982) Association between mitochondria and rough endoplasmic reticulum in rat liver. Anat Rec 203:441–450

    Article  CAS  PubMed  Google Scholar 

  129. Rizzuto R (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280(5370):1763–1766

    Article  CAS  PubMed  Google Scholar 

  130. Filadi R, Greotti E, Turacchio G, Luini A, Pozzan T, Pizzo P (2015) Mitofusin 2 ablation increases endoplasmic reticulum–mitochondria coupling. Proc Natl Acad Sci 112(17):E2174–E2181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bravo R, Vicencio JM, Parra V, Troncoso R, Munoz JP, Bui M et al (2011) Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J Cell Sci 124(14):2511–2511

    Article  CAS  Google Scholar 

  132. Bravo-sagua R, López-crisosto C, Parra V, Rodriguez M, Rothermel BA, Quest AFG et al (2016) mTORC1 inhibitor rapamycin and ER stressor tunicamycin induce differential patterns of ER- mitochondria coupling. Sci Rep 6:36394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Harmon M, Larkman P, Hardingham G, Jackson M, Skehel P (2017) A Bi-fluorescence complementation system to detect associations between the endoplasmic reticulum and mitochondria. Sci Rep 7:1–12

    Article  CAS  Google Scholar 

  134. de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456(7222):605–610

    Article  PubMed  CAS  Google Scholar 

  135. Valm AM, Cohen S, Legant WR, Melunis J, Hershberg U, Wait E et al (2017) Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546(7656):162–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Vance E (1990) Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem 265(13):7248–7256

    CAS  PubMed  Google Scholar 

  137. Filadi R, Theurey P, Pizzo P (2017) The endoplasmic reticulum-mitochondria coupling in health and disease: molecules, functions and significance. Cell Calcium 62:1–15

    Article  CAS  PubMed  Google Scholar 

  138. Marchi S, Patergnani S, Missiroli S, Morciano G, Rimessi A, Wieckowski MR et al (2018) Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium 69:62–72

    Article  CAS  PubMed  Google Scholar 

  139. Szabadkai G, Bianchi K, Várnai P, De Stefani D, Wieckowski MR, Cavagna D et al (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175(6):901–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Rieusset J, Fauconnier J, Paillard M, Belaidi E, Tubbs E, Chauvin M et al (2016) Disruption of calcium transfer from ER to mitochondria links alterations of mitochondria-associated ER membrane integrity to hepatic insulin resistance. Diabetologia 59:614–623

    Article  CAS  PubMed  Google Scholar 

  141. Cali T, Ottolini D, Negro A, Brini M (2012) α-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J Biol Chem 287(22):17914–17929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Naon D, Zaninello M, Giacomello M, Varanita T, Grespi F, Lakshminaranayan S et al (2016) Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum–mitochondria tether. Proc Natl Acad Sci 113(40):11249–11254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sebastián D, Hernández-alvarez MI, Segalés J, Sorianello E (2012) Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc Natl Acad Sci 109(14):5523–5528

    Article  PubMed  PubMed Central  Google Scholar 

  144. Rossi A, Pizzo P, Filadi R (2018) Calcium, mitochondria and cell metabolism: a functional triangle in bioenergetics. BBA Mol Cell Res 1865(11):1–33

    Google Scholar 

  145. De Stefani D, Raffaello A, Teardo E, Szabò I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476(7360):336–340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y et al (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476(7360):341–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mammucari C, Gherardi G, Rizzuto R (2017) Structure, activity regulation, and role of the mitochondrial calcium uniporter in health and disease. Front Oncol 7:139

    Article  PubMed  PubMed Central  Google Scholar 

  148. Liu JC, Liu J, Holmstrom KM, Menazza S, Parks RJ, Fergusson MM et al (2016) MICU1 serves as a molecular gatekeeper to prevent in vivo mitochondrial calcium overload. Cell Rep 16(6):1561–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Szabadkai G, Simoni AM, Rizzuto R (2003) Mitochondrial Ca2+ uptake requires sustained Ca2+ release from the endoplasmic reticulum. J Biol Chem 278(17):15153–15161

    Article  CAS  PubMed  Google Scholar 

  150. Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R (2008) Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27:6407–6418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Christensen KA, Myers JT, Swanson JA (2002) pH-dependent regulation of lysosomal calcium in macrophages. J Cell Sci 115(3):599–607

    CAS  PubMed  Google Scholar 

  152. Bowman EJ, Siebers A, Altendorf K (1988) Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A 85(21):7972–7976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Yoshimori T, Yamamoto A, Moriyama Y, Futai M, Tashiro Y (1991) Bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem 266(26):17707–17712

    CAS  PubMed  Google Scholar 

  154. Sanjurjo CIL, Tovey SC, Prole DL, Taylor CW (2012 Jan) Lysosomes shape IP3-evoked Ca2+ signals by selectively sequestering Ca2+ released from the endoplasmic reticulum. J Cell Sci 126(Pt 1):289–300

    Google Scholar 

  155. Sanjurjo CIL, Tovey SC, Taylor CW (2014) Rapid recycling of Ca2+between IP3-sensitive stores and lysosomes. PLoS One 9(10):e111275

    Article  CAS  Google Scholar 

  156. Ronco V, Potenza DM, Denti F, Vullo S, Gagliano G, Tognolina M et al (2015) A novel Ca2+-mediated cross-talk between endoplasmic reticulum and acidic organelles: implications for NAADP-dependent Ca2+signalling. Cell Calcium 57(2):89–100

    Article  CAS  PubMed  Google Scholar 

  157. Augustine MK, Choi MD, Ryter SW, Beth Levine MD (2014) Autophagy in human health and disease. N Engl J Med 368:651–662

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustín Guerrero-Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guerrero-Hernández, A. et al. (2020). Sarco-Endoplasmic Reticulum Calcium Release Model Based on Changes in the Luminal Calcium Content. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 1131. Springer, Cham. https://doi.org/10.1007/978-3-030-12457-1_14

Download citation

Publish with us

Policies and ethics