Neuroimaging in Cluster Headache and Trigeminal Autonomic Cephalalgias

  • Laura H. Schulte
  • Stefania FerraroEmail author
Part of the Headache book series (HEAD)


Within the last 20 years, the tremendous progress of neuroimaging techniques has provided an unprecedented impact on the comprehension of pathological processes at the basis of several neurological conditions.


  1. 1.
    Ashburner J, Friston KJ. Voxel-based morphometry—the methods. NeuroImage. 2000;11:805–21.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Ashburner J. Computational anatomy with the SPM software. Magn Reson Imaging. 2009;27:1163–74.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    May A, et al. Correlation between structural and functional changes in brain in an idiopathic headache syndrome. Nat Med. 1999;5:836–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Leone M, Franzini A, Broggi G, May A, Bussone G. Therapeutic stimulation of the hypothalamus: pathophysiological insights and prerequisites for management. Brain. 2005;128:E35.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Leone M, Franzini A, Broggi G, Bussone G. Hypothalamic deep brain stimulation for intractable chronic cluster headache: a 3-year follow-up. Neurol Sci. 2003;24(Suppl 2):S143–5.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Leone M, et al. Lessons from 8 years’ experience of hypothalamic stimulation in cluster headache. Cephalalgia. 2008;28:787–97; discussion 798PubMedPubMedCentralGoogle Scholar
  7. 7.
    Leone M, Franzini A, Proietti Cecchini A, Bussone G. Success, failure, and putative mechanisms in hypothalamic stimulation for drug-resistant chronic cluster headache. Pain. 2013;154:89–94.PubMedCrossRefGoogle Scholar
  8. 8.
    Naegel S, et al. Cortical plasticity in episodic and chronic cluster headache. Neuroimage Clin. 2014;6:415–23.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Absinta M, et al. Selective decreased grey matter volume of the pain-matrix network in cluster headache. Cephalalgia. 2012;32:109–15.PubMedCrossRefGoogle Scholar
  10. 10.
    Yang F-CC, et al. Altered gray matter volume in the frontal pain modulation network in patients with cluster headache. Pain. 2013;154:801–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Arkink EB, et al. The anterior hypothalamus in cluster headache. Cephalalgia. 2017;37:1039–50.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology. 1996;201:637–48.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Feldman HM, Yeatman JD, Lee ES, Barde LHF, Gaman-Bean S. Diffusion tensor imaging: a review for pediatric researchers and clinicians. J Dev Behav Pediatr. 2010;31:346–56.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Alexander AL, et al. Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain Connect. 2011;1:423–46.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Taoka T, et al. Diffusion anisotropy and diffusivity of white matter tracts within the temporal stem in Alzheimer disease: evaluation of the “tract of interest” by diffusion tensor tractography. AJNR Am J Neuroradiol. 2006;27:1040–5.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Teepker M, et al. Diffusion tensor imaging in episodic cluster headache. Headache. 2012;52:274–82.PubMedCrossRefGoogle Scholar
  17. 17.
    Rocca MA, et al. Central nervous system dysregulation extends beyond the pain-matrix network in cluster headache. Cephalalgia. 2010;30(11):1383–91. Scholar
  18. 18.
    Qiu E-C, et al. Altered regional homogeneity in spontaneous cluster headache attacks: a resting-state functional magnetic resonance imaging study. Chin Med J. 2012;125:705–9.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Chou K-H, et al. Bout-associated intrinsic functional network changes in cluster headache: a longitudinal resting-state functional MRI study. Cephalalgia. 2017;37:1152–63.PubMedCrossRefGoogle Scholar
  20. 20.
    Szabó N, et al. White matter disintegration in cluster headache. J Headache Pain. 2013;14:64.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Király A, et al. Macro- and microstructural alterations of the subcortical structures in episodic cluster headache. Cephalalgia. 2018;38(4):662–73.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Chou KH, et al. Altered white matter microstructural connectivity in cluster headaches: a longitudinal diffusion tensor imaging study. Cephalalgia. 2014;34:1040–52.PubMedCrossRefGoogle Scholar
  23. 23.
    May A, et al. Hypothalamic activation in cluster headache attacks. Lancet. 1998;352:275–8.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Morelli N, et al. Functional magnetic resonance imaging in episodic cluster headache. J Headache Pain. 2009;10:11–4.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Teepker M, et al. Diffusion tensor imaging in episodic cluster headache. Headache. 2011;52:274–82.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Leone M, Bussone G. Pathophysiology of trigeminal autonomic cephalalgias. Lancet Neurol. 2009;8:755–64.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Clelland CD, Zheng Z, Kim W, Bari A, Pouratian N. Common cerebral networks associated with distinct deep brain stimulation targets for cluster headache. Cephalalgia. 2014;34:224–30.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Del Rio MS, Alvarez LJ. Functional neuroimaging of headaches. Lancet Neurol. 2004;3:645–51.CrossRefGoogle Scholar
  29. 29.
    Matharu MS, Zrinzo L. Deep brain stimulation in cluster headache: hypothalamus or midbrain tegmentum? Curr Pain Headache Rep. 2010;14:151–9.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    May A, Bahra A, Büchel C, Frackowiak RS, Goadsby PJ. Hypothalamic activation in cluster headache attacks. Lancet. 1998;352:275–8.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Leone M, Proietti Cecchini A. Advances in the understanding of cluster headache. Expert Rev Neurother. 2017;17:165–72.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Lemaire J-J, et al. White matter connectivity of human hypothalamus. Brain Res. 2011;1371:43–64.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Faragó P, et al. Ipsilateral alteration of resting state activity suggests that cortical dysfunction contributes to the pathogenesis of cluster headache. Brain Topogr. 2017;30:281–9.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Yang F, Chou KH, Fuh JL, Lee PL, Lirng JF, Lin YY, Lin CP, Wang SJ. Altered hypothalamic functional connectivity in cluster headache: a longitudinal resting-state functional MRI study. J Neurol Neurosurg Psychiatry. 2015;86(4):437–45.PubMedCrossRefGoogle Scholar
  35. 35.
    Helmchen C, Mohr C, Erdmann C, Binkofski F. Cerebellar neural responses related to actively and passively applied noxious thermal stimulation in human subjects: a parametric fMRI study. Neurosci Lett. 2004;361:237–40.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Owen SLF, et al. Connectivity of an effective hypothalamic surgical target for cluster headache. J Clin Neurosci. 2007;14:955–60.PubMedCrossRefGoogle Scholar
  37. 37.
    Seijo F, et al. Neuromodulation of the posterolateral hypothalamus for the treatment of chronic refractory cluster headache: experience in five patients with a modified anatomical target. Cephalalgia. 2011;31:1634–41.PubMedCrossRefGoogle Scholar
  38. 38.
    Sprenger T, et al. Opioidergic changes in the pineal gland and hypothalamus in cluster headache: a ligand PET study. Neurology. 2006;66:1108–10.PubMedCrossRefGoogle Scholar
  39. 39.
    Massimo F. Oxford textbook of neuroimaging. Oxford: Oxford University Press; 2015.Google Scholar
  40. 40.
    Norris JW, Hachinski VC, Cooper PW. Cerebral blood flow changes in cluster headache. Acta Neurol Scand. 1976;54:371–4.PubMedCrossRefGoogle Scholar
  41. 41.
    Henry PY, Vernhiet J, Orgogozo JM, Caille JM. Cerebral blood flow in migraine and cluster headache. Compartmental analysis and reactivity to anaesthetic depression. Res Clin Stud Headache. 1978;6:81–8.PubMedGoogle Scholar
  42. 42.
    Krabbe AA, Henriksen L, Olesen J. Tomographic determination of cerebral blood flow during attacks of cluster headache. Cephalalgia. 1984;4:17–23.PubMedCrossRefGoogle Scholar
  43. 43.
    Nelson RF, et al. Cerebral blood flow studies in patients with cluster headache. Headache. 1980;20:184–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Afra J, Ertsey C, Jelencsik H, Dabasi G, Pánczél G. SPECT and TCD studies in cluster headache patients. Funct Neurol. 1995;10:259–64.PubMedGoogle Scholar
  45. 45.
    Sakai F, Meyer JS, Ishihara N, Naritomi H, Deshmukh VD. Noninvasive 133XE inhalation measurements of regional cerebral blood flow in migraine and related headaches. Acta Neurol Scand Suppl. 1977;64:196–7.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Di Piero V, Fiacco F, Tombari D, Pantano P. Tonic pain: a SPET study in normal subjects and cluster headache patients. Pain. 1997;70:185–91.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Schlake HP, Böttger IG, Grotemeyer KH, Husstedt IW, Schober O. Single photon emission computed tomography (SPECT) with 99mTc-HMPAO (hexamethyl propylenamino oxime) in chronic paroxysmal hemicrania—a case report. Cephalalgia. 1990;10:311–5.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Poughias L, Aasly J. SUNCT syndrome: cerebral SPECT images during attacks. Headache. 1995;35:143–5.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Hsieh JC, Hannerz J, Ingvar M. Right-lateralised central processing for pain of nitroglycerin-induced cluster headache. Pain. 1996;67:59–68.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Sprenger T, et al. Specific hypothalamic activation during a spontaneous cluster headache attack. Neurology. 2004;62:516–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Sprenger T, et al. Altered metabolism in frontal brain circuits in cluster headache. Cephalalgia. 2007;27:1033–42.PubMedCrossRefGoogle Scholar
  52. 52.
    Magis D, et al. Central modulation in cluster headache patients treated with occipital nerve stimulation: an FDG-PET study. BMC Neurol. 2011;11:25.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Matharu MS, et al. Posterior hypothalamic and brainstem activation in hemicrania continua. Headache. 2004;44:747–61.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34:537–41.PubMedCrossRefGoogle Scholar
  55. 55.
    Cordes D, et al. Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state”; data. AJNR Am J Neuroradiol. 2001;22:1326–33.PubMedGoogle Scholar
  56. 56.
    Honey CJ, et al. Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci U S A. 2009;106:2035–40.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Vincent JL, et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature. 2007;447:83–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Passingham RE, Stephan KE, Kötter R. The anatomical basis of functional localization in the cortex. Nat Rev Neurosci. 2002;3:606–16.PubMedCrossRefGoogle Scholar
  59. 59.
    Cohen AL, et al. Defining functional areas in individual human brains using resting functional connectivity MRI. NeuroImage. 2008;41:45–57.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Skudlarski P, et al. Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. NeuroImage. 2008;43:554–61.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Quigley M, et al. Role of the corpus callosum in functional connectivity. AJNR Am J Neuroradiol. 2003;24:208–12.PubMedGoogle Scholar
  62. 62.
    Johnston JM, et al. Loss of resting interhemispheric functional connectivity after complete section of the corpus callosum. J Neurosci. 2008;28:6453–8.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Uddin LQ. Brain connectivity and the self: the case of cerebral disconnection. Conscious Cogn. 2011;20:94–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8(9):700–11. Scholar
  65. 65.
    Salinas E, Sejnowski TJ. Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci. 2001;2:539–50.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Pouget A, Dayan P, Zemel RS. Inference and computation with population code. Annu Rev Neurosci. 2003;26:381–410.PubMedCrossRefGoogle Scholar
  67. 67.
    Xiong J, Parsons LM, Gao JH, Fox PT. Interregional connectivity to primary motor cortex revealed using MRI resting state images. Hum Brain Mapp. 1999;8:151–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond Ser B Biol Sci. 2005;360:1001–13.CrossRefGoogle Scholar
  69. 69.
    Cordes D, et al. Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am J Neuroradiol. 2000;21:1636–44.PubMedGoogle Scholar
  70. 70.
    Lowe MJ, Mock BJ, Sorenson JA. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. NeuroImage. 1998;7:119–32.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM. fMRI resting state networks define distinct modes of long-distance interactions in the human brain. NeuroImage. 2006;29:1359–67.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Bartels A, Zeki S. Brain dynamics during natural viewing conditions—a new guide for mapping connectivity in vivo. NeuroImage. 2005;24:339–49.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Cordes D, Haughton V, Carew JD, Arfanakis K, Maravilla K. Hierarchical clustering to measure connectivity in fMRI resting-state data. Magn Reson Imaging. 2002;20:305–17.PubMedCrossRefGoogle Scholar
  74. 74.
    Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003;100(1):253–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Raichle ME, et al. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98(2):676–82.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Raichle ME. The brain’s default mode network. Annu Rev Neurosci. 2015;38:433–47.PubMedCrossRefGoogle Scholar
  77. 77.
    Greicius M. Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol. 2008;21:424–30.PubMedCrossRefGoogle Scholar
  78. 78.
    Power JD, et al. Functional network organization of the human brain. Neuron. 2011;72:665–78.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Rombouts SA, Stam CJ, Kuijer J, et al. Identifying confounds to increase specificity during a ‘no task condition’: evidence for hippocampal connectivity using fMRI. NeuroImage. 2003;20(2):1236–45.PubMedCrossRefGoogle Scholar
  80. 80.
    Zhang D, Snyder AZ, Fox MD, Sansbury MW, Shimony JS, Raichle ME. Intrinsic functional relations between human cerebral cortex and thalamus. J Neurophysiol. 2008;100(4):1740–8.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20(4):953–65.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Kullmann S, et al. Resting-state functional connectivity of the human hypothalamus. Hum Brain Mapp. 2014;35:6088–96.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, Reiss AL, Schatzberg AF. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry. 2007;62:429–37.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Wang L, et al. Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. NeuroImage. 2006;31:496–504.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, Liang M, Tian LX, Jiang TZ, Wang YF. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain and Development. 2007;29(2):83–91.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Zhou Y, et al. Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI. Neurosci Lett. 2007;417:297–302.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Wu Q-Z, et al. Abnormal regional spontaneous neural activity in treatment-refractory depression revealed by resting-state fMRI. Hum Brain Mapp. 2011;32:1290–9.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Rosazza C, et al. Multimodal study of default-mode network integrity in disorders of consciousness. Ann Neurol. 2016;79:841–53.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Greicius MD, Menon V. Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation. J Cogn Neurosci. 2004;16:1484–92.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Filippini N, et al. Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci U S A. 2009;106:7209–14.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Headache Classification Committee of the International Headache Society (IHS). The international classification of headache disorders, 3rd edition (beta version). Cephalalgia. 2013;33:629–808.CrossRefGoogle Scholar
  92. 92.
    May A, Bahra A, Büchel C, Turner R, Goadsby PJ. Functional magnetic resonance imaging in spontaneous attacks of SUNCT: short-lasting neuralgiform headache with conjunctival injection and tearing. Ann Neurol. 1999;46:791–4.PubMedCrossRefGoogle Scholar
  93. 93.
    Franzini A, et al. Stimulation of the posterior hypothalamus for treatment of chronic intractable cluster headaches: first reported series. Neurosurgery. 2003;52:1095–101.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Fontaine D, et al. Anatomical location of effective deep brain stimulation electrodes in chronic cluster headache. Brain. 2010;133:1214–23.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Akram H, et al. Ventral tegmental area deep brain stimulation for refractory chronic cluster headache. Neurology. 2016;86:1676–82.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Chabardès S, et al. Endoventricular deep brain stimulation of the third ventricle. Neurosurgery. 2016;0:1.Google Scholar
  97. 97.
    May A, et al. Hypothalamic deep brain stimulation in positron emission tomography. J Neurosci. 2006;26:3589–93.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Seeley WW, et al. Behavioral/systems/cognitive dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 2002;3:655–66.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Peyron R, Laurent B, García-Larrea L. Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin. 2000;30(5):263–88.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ. Neural systems supporting interoceptive awareness. Nat Neurosci. 2004;7(2):189–95.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Beissner F, Meissner K, Bär K-J, Napadow V. The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neurosci. 2013;33:10503–11.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    May A, Bahra A, Büchel C, Frackowiak RS, Goadsby PJ. PET and MRA findings in cluster headache and MRA in experimental pain. Neurology. 2000;55:1328–35.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Qiu E, et al. Abnormal brain functional connectivity of the hypothalamus in cluster headaches. PLoS One. 2013;8:e57896.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Qiu E, Tian L, Wang Y, Ma L, Yu S. Abnormal coactivation of the hypothalamus and salience network in patients with cluster headache. Neurology. 2015;84:1402–8.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Baliki MN, Geha PY, Apkarian AV, Chialvo DR. Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci. 2008;28:1398–403.PubMedCrossRefGoogle Scholar
  107. 107.
    Napadow V, La Count L, Park K, As-Sanie S, Clauw DJ, Harris RE. Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum. 2010;62(8):2545–55.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Loggia M, et al. Default mode network connectivity encodes clinical pain: an arterial spin labeling study. Pain. 2013;154(1):24–33.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Kucyi A, et al. Enhanced medial prefrontal-default mode network functional connectivity in chronic pain and its association with pain rumination. J Neurosci. 2014;34:3969–75.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Del Rio MS, et al. Reviews functional neuroimaging of headaches. Lancet Neurol. 2004;3:645–51.CrossRefGoogle Scholar
  111. 111.
    Ferraro S, et al. Defective functional connectivity between posterior hypothalamus and regions of the diencephalic-mesencephalic junction in chronic cluster headache. Cephalalgia. 2018;38(13):1910–8. Scholar
  112. 112.
    Borsook D, Edwards R, Elman I, Becerra L, Levine J. Pain and analgesia the value of the salience circuit. Prog Neurobiol. 2013;104:93–105.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Bahra A, May A, Goadsby PJ. Cluster headache: a prospective clinical study with diagnostic implications. Neurology. 2002;58:354–61.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Tracey I. Imaging pain. Br J Anaesth. 2008;101:32–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Adamson MM, et al. Higher landing accuracy in expert pilots is associated with lower activity in the caudate nucleus. PLoS One. 2014;9:e112607.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Uddin LQ. The self in autism: an emerging view from neuroimaging. Neurocase. 2011;17:201–8.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Elsenbruch S, et al. Patients with irritable bowel syndrome have altered emotional modulation of neural responses to visceral stimuli. Gastroenterology. 2010;139:1310–9.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Eck J, Richter M, Straube T, Miltner WHR, Weiss T. Affective brain regions are activated during the processing of pain-related words in migraine patients. Pain. 2011;152:1104–13.PubMedCrossRefGoogle Scholar
  119. 119.
    Maleki N, Becerra L, Borsook D. Migraine: maladaptive brain responses to stress. Headache. 2012;52:102–6.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Palaniyappan L, Simmonite M, White TP, Liddle EB, Liddle PF. Neural primacy of the salience processing system in schizophrenia. Neuron. 2013;79:814–28.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Geng X, et al. Salience and default mode network dysregulation in chronic cocaine users predict treatment outcome. Brain. 2017;140:1513–24.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Morelli N, et al. Brainstem activation in cluster headache: an adaptive behavioural response? Cephalalgia. 2013;33:416–20.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Sprenger T, et al. Hypothalamic activation in trigeminal autonomic cephalgia: functional imaging of an atypical case. Cephalalgia. 2004;24:753–7.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Auer T, et al. Attack-related brainstem activation in a patient with SUNCT syndrome: an Ictal fMRI study. Headache. 2009;49:909–12.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Sprenger T, et al. SUNCT: bilateral hypothalamic activation during headache attacks and resolving of symptoms after trigeminal decompression. Pain. 2005;113:422–6.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Systems Neuroscience and Clinic of PsychiatryUniversity Medical Center EppendorfHamburgGermany
  2. 2.Fondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly

Personalised recommendations