Advertisement

Trigeminal Neuralgia: Channels, Pathophysiology, and Therapeutic Challenges

  • Daniele Cazzato
  • Stine Maarbjerg
  • Lars Bendtsen
  • Giuseppe LauriaEmail author
Chapter
  • 484 Downloads
Part of the Headache book series (HEAD)

Abstract

Trigeminal neuralgia (TN) is a condition characterized by paroxysmal excruciating and usually unilateral pain attacks within the territory of one or more divisions of the trigeminal nerve. The underlying pathophysiological mechanisms remain poorly understood. The abrupt onset and termination of electric shock-like severe pain, the triggering role of non-noxious light sensory stimuli, the spreading of pain beyond the stimulated area, and the post-attack refractoriness represent some of the intriguing and challenging aspects of TN pathophysiology. This chapter reviews the updated pathophysiological hypotheses for TN, the emerging role of ion channels potentially representing novel therapeutic targets for the treatment of the disorder, and the current therapeutic approach based on a diagnostic work-up and treatment algorithm.

Keywords

Trigeminal neuralgia Neuropathic pain Ion channels Voltage-gated sodium channels (VGSC) Calcium-activated potassium channels (BKCa) Calcium channels Transient receptor potential (TRP) channels Chronic constriction injury of the infraorbital nerve (CION) Carbamazepine Eslicarbazepine OnabotulinumtoxinA Neurovascular compression 

References

  1. 1.
    Zakrzewska JM, Linskey ME. Trigeminal neuralgia. BMJ. 2014;348:g474. http://www.ncbi.nlm.nih.gov/pubmed/24534115 PubMedCrossRefGoogle Scholar
  2. 2.
    Jannetta PJ. Arterial compression of the trigeminal nerve at the pons in patients with trigeminal neuralgia. J Neurosurg. 1967;26(1part2):159–62. http://www.ncbi.nlm.nih.gov/pubmed/6018932 CrossRefGoogle Scholar
  3. 3.
    Jannetta PJ. Microsurgical approach to the trigeminal nerve for tic douloureux. Basel: Karger Publishers; 1976. p. 180–200. https://www.karger.com/Article/FullText/428328 Google Scholar
  4. 4.
    Love S, Coakham HB. Trigeminal neuralgia: pathology and pathogenesis. Brain. 2001;124(Pt 12):2347–60. https://www.ncbi.nlm.nih.gov/pubmed/11701590.PubMedCrossRefGoogle Scholar
  5. 5.
    Truini A, Prosperini L, Calistri V, Fiorelli M, Pozzilli C, Millefiorini E, et al. A dual concurrent mechanism explains trigeminal neuralgia in patients with multiple sclerosis. Neurology. 2016;86(22):2094–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Woolf CJ, Ma Q. Nociceptors-noxious stimulus detectors. Neuron. 2007;55(3):353–64.PubMedCrossRefGoogle Scholar
  7. 7.
    Waxman SG, Zamponi GW. Regulating excitability of peripheral afferents: emerging ion channel targets. Nat Neurosci. 2014;17(2):153–63.PubMedCrossRefGoogle Scholar
  8. 8.
    Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces. Pain. 1988;33:87–107.  https://doi.org/10.1016/0304-3959(88)90209-6.PubMedCrossRefGoogle Scholar
  9. 9.
    Ahmad S, Dahllund L, Eriksson AB, Hellgren D, Karlsson U, Lund PE, et al. A stop codon mutation in SCN9A causes lack of pain sensation. Hum Mol Genet. 2007;16(17):2114–21.PubMedCrossRefGoogle Scholar
  10. 10.
    Yuan J, Matsuura E, Higuchi Y, Hashiguchi A, Nakamura T, Nozuma S, et al. Hereditary sensory and autonomic neuropathy type IID caused by an SCN9A mutation. Neurology. 2013;80(18):1641–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Leipold E, Liebmann L, Korenke GC, Heinrich T, Giesselmann S, Baets J, et al. A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat Genet. 2013;45(11):1399–404. http://www.ncbi.nlm.nih.gov/pubmed/24036948 PubMedCrossRefGoogle Scholar
  12. 12.
    Bennett DLH, Woods CG. Painful and painless channelopathies. Lancet Neurol. 2014;13(6):587–99.CrossRefGoogle Scholar
  13. 13.
    Faber CG, Hoeijmakers JGJ, Ahn HS, Cheng X, Han C, Choi JS, et al. Gain of function Na V1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol. 2012;71(1):26–39.PubMedCrossRefGoogle Scholar
  14. 14.
    Faber CG, Lauria G, Merkies ISJ, Cheng X, Han C, Ahn H-S, et al. Gain-of-function Nav1.8 mutations in painful neuropathy. Proc Natl Acad Sci U S A. 2012;109(47):19444–9. http://www.pnas.org/content/109/47/19444.long PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Huang J, Han C, Estacion M, Vasylyev D, Hoeijmakers JGJ, Gerrits MM, et al. Gain-of-function mutations in sodium channel NaV1.9 in painful neuropathy. Brain. 2014;137(6):1627–42.PubMedCrossRefGoogle Scholar
  16. 16.
    Waxman SG. Painful Na-channelopathies: an expanding universe. Trends Mol Med. 2013;19(7):406–9.  https://doi.org/10.1016/j.molmed.2013.04.003.PubMedCrossRefGoogle Scholar
  17. 17.
    Tanaka BS, Zhao P. A gain-of-function mutation in Nav1.6 in a case of trigeminal neuralgia. Mol Med. 2016;22(1):1. http://www.molmed.org/content/pdfstore/16_131_Tanaka.pdf CrossRefGoogle Scholar
  18. 18.
    Siqueira SRDT, Alves B, Malpartida HMG, Teixeira MJ, Siqueira JTT. Abnormal expression of voltage-gated sodium channels Nav1.7, Nav1.3 and Nav1.8 in trigeminal neuralgia. Neuroscience. 2009;164(2):573–7.  https://doi.org/10.1016/j.neuroscience.2009.08.037.PubMedCrossRefGoogle Scholar
  19. 19.
    Lulz AP, Kopach O, Santana-Varela S, Wood JN. The role of Nav1.9 channel in the development of neuropathic orofacial pain associated with trigeminal neuralgia. Mol Pain. 2015;11:1–7.CrossRefGoogle Scholar
  20. 20.
    Leo S, D’Hooge R, Meert T. Exploring the role of nociceptor-specific sodium channels in pain transmission using Nav1.8 and Nav1.9 knockout mice. Behav Brain Res. 2010;208(1):149–57.  https://doi.org/10.1016/j.bbr.2009.11.023.PubMedCrossRefGoogle Scholar
  21. 21.
    Minett MS, Falk S, Santana-Varela S, Bogdanov YD, Nassar MA, Heegaard AM, et al. Pain without nociceptors? Nav1.7-independent pain mechanisms. Cell Rep. 2014;6(2):301–12.  https://doi.org/10.1016/j.celrep.2013.12.033.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389(6653):816–24. http://www.ncbi.nlm.nih.gov/pubmed/9349813 PubMedCrossRefGoogle Scholar
  23. 23.
    Urano H, Ara T, Fujinami Y, Yukihiro Hiraoka B. Aberrant TRPV1 expression in heat hyperalgesia associated with trigeminal neuropathic pain. Int J Med Sci. 2012;9(8):690–7.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Zuo X, Ling JX, Xu GY, Gu JG. Operant behavioral responses to orofacial cold stimuli in rats with chronic constrictive trigeminal nerve injury: effects of menthol and capsazepine. Mol Pain. 2013;9(1):28.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Trevisan G, Benemei S, Materazzi S, De Logu F, De Siena G, Fusi C, et al. TRPA1 mediates trigeminal neuropathic pain in mice downstream of monocytes/macrophages and oxidative stress. Brain. 2016;139(5):1361–77.PubMedCrossRefGoogle Scholar
  26. 26.
    Liu C-Y, Lu Z-Y, Li N, Yu L-H, Zhao Y-F, Ma B. The role of large-conductance, calcium-activated potassium channels in a rat model of trigeminal neuropathic pain. Cephalalgia. 2015;35(1):16–35. http://journals.sagepub.com/doi/10.1177/0333102414534083 PubMedCrossRefGoogle Scholar
  27. 27.
    Li KW, Yu YP, Zhou C, Kim DS, Lin B, Sharp K, et al. Calcium channel α2δ1 proteins mediate trigeminal neuropathic pain states associated with aberrant excitatory synaptogenesis. J Biol Chem. 2014;289(10):7025–37.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Choi S, Yu E, Hwang E, Llinás RR. Pathophysiological implication of Ca V 3.1 T-type Ca 2+ channels in trigeminal neuropathic pain. Proc Natl Acad Sci U S A. 2016;113(8):2270–5. http://www.pnas.org/lookup/doi/10.1073/pnas.1600418113 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Cruccu G, Gronseth G, Alksne J, Argoff C, Brainin M, Burchiel K, et al. AAN-EFNS guidelines on trigeminal neuralgia management. Eur J Neurol. 2008;15(10):1013–28.PubMedCrossRefGoogle Scholar
  30. 30.
    Wiffen PJ, Derry S, Moore RA, McQuay HJ. Carbamazepine for acute and chronic pain in adults. Cochrane Database Syst Rev. 2011;(1):CD005451.Google Scholar
  31. 31.
    Di Stefano G, La Cesa S, Truini A, Cruccu G. Natural history and outcome of 200 outpatients with classical trigeminal neuralgia treated with carbamazepine or oxcarbazepine in a tertiary centre for neuropathic pain. J Headache Pain. 2014;15(1):1–5.CrossRefGoogle Scholar
  32. 32.
    Tangamornsuksan W, Chaiyakunapruk N, Somkrua R, Lohitnavy M, Tassaneeyakul W. Relationship between the HLA-B*1502 allele and carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. JAMA Dermatol. 2013;149(9):1025–32. http://www.ncbi.nlm.nih.gov/pubmed/23884208 PubMedCrossRefGoogle Scholar
  33. 33.
    Beydoun A. Safety and efficacy of oxcarbazepine: results of randomized, double-blind trials. Pharmacotherapy. 2000;20(8):152S–8S. http://www.ncbi.nlm.nih.gov/pubmed/10937814 PubMedCrossRefGoogle Scholar
  34. 34.
    Vincent M, Wang S. Headache classification committee of the International Headache Society (IHS) the international classification of headache disorders, 3rd edition. Cephalalgia. 2018;38(1):1–211. http://journals.sagepub.com/doi/10.1177/0333102417738202 CrossRefGoogle Scholar
  35. 35.
    Maarbjerg S, Wolfram F, Gozalov A, Olesen J, Bendtsen L. Significance of neurovascular contact in classical trigeminal neuralgia. Brain. 2015;138(2):311–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Sanchez-Larsen A, Sopelana D, Diaz-Maroto I, Perona-Moratalla AB, Gracia-Gil J, García-Muñozguren S, et al. Assessment of efficacy and safety of eslicarbazepine acetate for the treatment of trigeminal neuralgia. Eur J Pain. 2018;22(6):1080–7. http://www.ncbi.nlm.nih.gov/pubmed/29369456 PubMedCrossRefGoogle Scholar
  37. 37.
    Morra ME, Elgebaly A, Elmaraezy A, Khalil AM, Altibi AMA, TL-H V, et al. Therapeutic efficacy and safety of Botulinum Toxin A Therapy in Trigeminal Neuralgia: a systematic review and meta-analysis of randomized controlled trials. J Headache Pain. 2016;17(1):63. http://thejournalofheadacheandpain.springeropen.com/articles/10.1186/s10194-016-0651-8 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Zakrzewska JM, Palmer J, Morisset V, Giblin GM, Obermann M, Ettlin DA, et al. Safety and efficacy of a Nav1.7 selective sodium channel blocker in patients with trigeminal neuralgia: a double-blind, placebo-controlled, randomised withdrawal phase 2a trial. Lancet Neurol. 2017;16(4):291–300.  https://doi.org/10.1016/S1474-4422(17)30005-4.PubMedCrossRefGoogle Scholar
  39. 39.
    Katusic S, Beard CM, Bergstralth E, Kurland LT. Incidence and clinical features of trigeminal neuralgia, Rochester, Minnesota, 1945-1984. Ann Neurol. 1990;27(1):89–95. http://www.ncbi.nlm.nih.gov/pubmed/2301931 PubMedCrossRefGoogle Scholar
  40. 40.
    Heinskou TB, Rochat P, Maarbjerg S, et al. Prognostic factors for outcome of microvascular decompression in trigeminal neuralgia. Cephalalgia. 2018;. in pressGoogle Scholar
  41. 41.
    Barker FG, Jannetta PJ, Bissonette DJ, Larkins MV, Jho HD. The long-term outcome of microvascular decompression for trigeminal neuralgia. N Engl J Med. 1996;334(17):1077–83. http://www.nejm.org/doi/abs/10.1056/NEJM199604253341701 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Daniele Cazzato
    • 1
  • Stine Maarbjerg
    • 2
  • Lars Bendtsen
    • 2
  • Giuseppe Lauria
    • 3
    • 4
    Email author
  1. 1.Neurophysiology and Neuroalgology Units, Department of Clinical NeuroscienceIRCCS Foundation “Carlo Besta” Neurological InstituteMilanItaly
  2. 2.Department of Neurology, Danish Headache Center, Rigshospitalet—GlostrupUniversity of CopenhagenCopenhagenDenmark
  3. 3.Department of Biomedical and Clinical Sciences “Luigi Sacco”University of MilanMilanItaly
  4. 4.Neuroalgology Unit, Department of Clinical NeuroscienceIRCCS Foundation “Carlo Besta” Neurological InstituteMilanItaly

Personalised recommendations