Advertisement

The Role of the Sphenopalatine Ganglion in Headache Conditions: New Insights

  • Erling TronvikEmail author
  • Rigmor Jensen
Chapter
  • 429 Downloads
Part of the Headache book series (HEAD)

Abstract

For more than 100 years, the sphenopalatine ganglion (SPG) has been targeted for the treatment of headache and facial pain. Several techniques have been used over the years to influence the activity in this neuronal structure, from intranasal cocaine to today’s implanted stimulators. Data collected throughout the years point in the direction of an important role of this parasympathetic ganglion in different primary headaches. The aim of the present chapter is to give an overview of the anatomy and physiology of this structure with relation to headache pathophysiology and in particular how it may be targeted to treat headache disorders.

Keywords

Sphenopalatine ganglion Otic ganglion Cluster headache Migraine Autonomic nervous system 

References

  1. 1.
    Stojcev Stajcic L, et al. Anatomical study of the pterygopalatine fossa pertinent to the maxillary nerve block at the foramen rotundum. Int J Oral Maxillofac Surg. 2010;39(5):493–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Rusu MC, et al. The pterygopalatine ganglion in humans: a morphological study. Ann Anat. 2009;191(2):196–202.PubMedCrossRefGoogle Scholar
  3. 3.
    Lovasova K, et al. Anatomical study of the roots of cranial parasympathetic ganglia: a contribution to medical education. Ann Anat. 2013;195(3):205–11.PubMedCrossRefGoogle Scholar
  4. 4.
    Rusu MC, Pop F. The anatomy of the sympathetic pathway through the pterygopalatine fossa in humans. Ann Anat. 2010;192(1):17–22.PubMedCrossRefGoogle Scholar
  5. 5.
    Ivanusic JJ, et al. 5-HT(1D) receptor immunoreactivity in the sphenopalatine ganglion: implications for the efficacy of triptans in the treatment of autonomic signs associated with cluster headache. Headache. 2011;51(3):392–402.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Csati A, et al. Calcitonin gene-related peptide and its receptor components in the human sphenopalatine ganglion—interaction with the sensory system. Brain Res. 2012;1435:29–39.PubMedCrossRefGoogle Scholar
  7. 7.
    May A, Goadsby PJ. The trigeminovascular system in humans: pathophysiologic implications for primary headache syndromes of the neural influences on the cerebral circulation. J Cereb Blood Flow Metab. 1999;19(2):115–27.PubMedCrossRefGoogle Scholar
  8. 8.
    Khan S, Schoenen J, Ashina M. Sphenopalatine ganglion neuromodulation in migraine: what is the rationale? Cephalalgia. 2014;34(5):382–91.PubMedCrossRefGoogle Scholar
  9. 9.
    Noseda R, Burstein R. Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, CSD, sensitization and modulation of pain. Pain. 2013;154(Suppl 1):S44–53.  https://doi.org/10.1016/j.pain.2013.07.021.PubMedCrossRefGoogle Scholar
  10. 10.
    Yarnitsky D, et al. 2003 Wolff award: possible parasympathetic contributions to peripheral and central sensitization during migraine. Headache. 2003;43(7):704–14.PubMedCrossRefGoogle Scholar
  11. 11.
    Lad SP, et al. Cyberknife targeting the pterygopalatine ganglion for the treatment of chronic cluster headaches. Neurosurgery. 2007;60(3):E580–1; discussion E581PubMedCrossRefGoogle Scholar
  12. 12.
    Tan DY, et al. Frameless linac-based stereotactic radiosurgery treatment for SUNCT syndrome targeting the trigeminal nerve and sphenopalatine ganglion. Cephalalgia. 2013;33(13):1132–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Schoenen J, et al. Stimulation of the sphenopalatine ganglion (SPG) for cluster headache treatment. Pathway CH-1: a randomized, sham-controlled study. Cephalalgia. 2013;33(10):816–30.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Ekstrom J, et al. Depletion of neuropeptides in rat parotid glands and declining atropine-resistant salivary secretion upon continuous parasympathetic nerve stimulation. Regul Pept. 1985;11(4):353–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Ansarinia M, et al. Electrical stimulation of sphenopalatine ganglion for acute treatment of cluster headaches. Headache. 2010;50(7):1164–74.PubMedCrossRefGoogle Scholar
  16. 16.
    Narouze S. Neurostimulation at pterygopalatine fossa for cluster headaches and cerebrovascular disorders. Curr Pain Headache Rep. 2014;18(7):432.PubMedCrossRefGoogle Scholar
  17. 17.
    Guo S, et al. Cranial parasympathetic activation induces autonomic symptoms but no cluster headache attacks. Cephalalgia. 2018;38:1418–28.PubMedCrossRefGoogle Scholar
  18. 18.
    Assaf AT, et al. Technical and surgical aspects of the sphenopalatine ganglion (SPG) microstimulator insertion procedure. Int J Oral Maxillofac Surg. 2016;45(2):245–54.PubMedCrossRefGoogle Scholar
  19. 19.
    Matharu MS, Goadsby PJ. Persistence of attacks of cluster headache after trigeminal nerve root section. Brain. 2002;125(Pt 5):976–84.PubMedCrossRefGoogle Scholar
  20. 20.
    Schytz HW, et al. Experimental activation of the sphenopalatine ganglion provokes cluster-like attacks in humans. Cephalalgia. 2013;33(10):831–41.PubMedCrossRefGoogle Scholar
  21. 21.
    Sluder G. The role of the sphenopalatine ganglion in nasal headaches. NY State J Med. 1908;27:8–13.Google Scholar
  22. 22.
    Barre F. Cocaine as an abortive agent in cluster headache. Headache. 1982;22(2):69–73.PubMedCrossRefGoogle Scholar
  23. 23.
    Kittrelle JP, Grouse DS, Seybold ME. Cluster headache. Local anesthetic abortive agents. Arch Neurol. 1985;42(5):496–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Hardebo JE, Elner A. Nerves and vessels in the pterygopalatine fossa and symptoms of cluster headache. Headache. 1987;27(10):528–32.PubMedCrossRefGoogle Scholar
  25. 25.
    Robbins L. Intranasal lidocaine for cluster headache. Headache. 1995;35(2):83–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Puig CM, Driscoll CL, Kern EB. Sluder’s sphenopalatine ganglion neuralgia—treatment with 88% phenol. Am J Rhinol. 1998;12(2):113–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Costa A, et al. The effect of intranasal cocaine and lidocaine on nitroglycerin-induced attacks in cluster headache. Cephalalgia. 2000;20(2):85–91.PubMedCrossRefGoogle Scholar
  28. 28.
    Meyer JS, et al. Sphenopalatine ganglionectomy for cluster headache. Arch Otolaryngol. 1970;92(5):475–84.PubMedCrossRefGoogle Scholar
  29. 29.
    Gardner WJ, Stowell A, Dutlinger R. Resection of the greater superficial petrosal nerve in the treatment of unilateral headache. J Neurosurg. 1947;4(2):105–14.PubMedCrossRefGoogle Scholar
  30. 30.
    Devoghel JC. Cluster headache and sphenopalatine block. Acta Anaesthesiol Belg. 1981;32(1):101–7.PubMedGoogle Scholar
  31. 31.
    Sanders M, Zuurmond WW. Efficacy of sphenopalatine ganglion blockade in 66 patients suffering from cluster headache: a 12- to 70-month follow-up evaluation. J Neurosurg. 1997;87(6):876–80.PubMedCrossRefGoogle Scholar
  32. 32.
    Narouze S, et al. Sphenopalatine ganglion radiofrequency ablation for the management of chronic cluster headache. Headache. 2009;49(4):571–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Chua NH, Vissers KC, Wilder-Smith OH. Quantitative sensory testing may predict response to sphenopalatine ganglion pulsed radiofrequency treatment in cluster headaches: a case series. Pain Pract. 2011;11(5):439–45.PubMedCrossRefGoogle Scholar
  34. 34.
    Fang L, et al. Computerized tomography-guided sphenopalatine ganglion pulsed radiofrequency treatment in 16 patients with refractory cluster headaches: twelve- to 30-month follow-up evaluations. Cephalalgia. 2016;36(2):106–12.PubMedCrossRefGoogle Scholar
  35. 35.
    Bendersky DC, Hem SM, Yampolsky CG. Unsuccessful pulsed radiofrequency of the sphenopalatine ganglion in patients with chronic cluster headache and subsequent successful thermocoagulation. Pain Pract. 2015;15(5):E40–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Felisati G, et al. Sphenopalatine endoscopic ganglion block: a revision of a traditional technique for cluster headache. Laryngoscope. 2006;116(8):1447–50.PubMedCrossRefGoogle Scholar
  37. 37.
    Pipolo C, et al. Sphenopalatine endoscopic ganglion block in cluster headache: a reevaluation of the procedure after 5 years. Neurol Sci. 2010;31(Suppl 1):S197–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Bratbak DF, et al. Pilot study of sphenopalatine injection of onabotulinumtoxinA for the treatment of intractable chronic cluster headache. Cephalalgia. 2016;36(6):503–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Steinberg A, et al. Expression of messenger molecules and receptors in rat and human sphenopalatine ganglion indicating therapeutic targets. J Headache Pain. 2016;17(1):78.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Jurgens TP, et al. Long-term effectiveness of sphenopalatine ganglion stimulation for cluster headache. Cephalalgia. 2017;37(5):423–34.PubMedCrossRefGoogle Scholar
  41. 41.
    Jensen R, et al. Sphenopalatine ganglion stimulation for cluster headache, results from a large, open-label European registry. J Headache Pain. 2018;19:6.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Lai TH, Fuh JL, Wang SJ. Cranial autonomic symptoms in migraine: characteristics and comparison with cluster headache. J Neurol Neurosurg Psychiatry. 2009;80(10):1116–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Barbanti P, et al. The phenotype of migraine with unilateral cranial autonomic symptoms documents increased peripheral and central trigeminal sensitization. A case series of 757 patients. Cephalalgia. 2016;36(14):1334–40.PubMedCrossRefGoogle Scholar
  44. 44.
    Barbanti P, et al. Unilateral cranial autonomic symptoms in migraine. Cephalalgia. 2002;22(4):256–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Obermann M, et al. Prevalence of trigeminal autonomic symptoms in migraine: a population-based study. Cephalalgia. 2007;27(6):504–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Gelfand AA, Reider AC, Goadsby PJ. Cranial autonomic symptoms in pediatric migraine are the rule, not the exception. Neurology. 2013;81(5):431–6.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Burstein R, Jakubowski M. Unitary hypothesis for multiple triggers of the pain and strain of migraine. J Comp Neurol. 2005;493(1):9–14.PubMedCrossRefGoogle Scholar
  48. 48.
    Spencer SE, et al. CNS projections to the pterygopalatine parasympathetic preganglionic neurons in the rat: a retrograde transneuronal viral cell body labeling study. Brain Res. 1990;534(1-2):149–69.PubMedCrossRefGoogle Scholar
  49. 49.
    Kudrow L, Kudrow DB, Sandweiss JH. Rapid and sustained relief of migraine attacks with intranasal lidocaine: preliminary findings. Headache. 1995;35(2):79–82.PubMedCrossRefGoogle Scholar
  50. 50.
    Maizels M, et al. Intranasal lidocaine for treatment of migraine: a randomized, double-blind, controlled trial. JAMA. 1996;276(4):319–21.PubMedCrossRefGoogle Scholar
  51. 51.
    Maizels M, Geiger AM. Intranasal lidocaine for migraine: a randomized trial and open-label follow-up. Headache. 1999;39(8):543–51.PubMedCrossRefGoogle Scholar
  52. 52.
    Cady R, et al. A double-blind, placebo-controlled study of repetitive transnasal sphenopalatine ganglion blockade with tx360® as acute treatment for chronic migraine. Headache. 2015;55(1):101–16.PubMedCrossRefGoogle Scholar
  53. 53.
    Cady RK, et al. Long-term efficacy of a double-blind, placebo-controlled, randomized study for repetitive sphenopalatine blockade with bupivacaine vs. saline with the Tx360 device for treatment of chronic migraine. Headache. 2015;55(4):529–42.PubMedCrossRefGoogle Scholar
  54. 54.
    Blanda M, et al. Intranasal lidocaine for the treatment of migraine headache: a randomized, controlled trial. Acad Emerg Med. 2001;8(4):337–42.PubMedCrossRefGoogle Scholar
  55. 55.
    Avcu N, et al. Intranasal lidocaine in acute treatment of migraine: a randomized controlled trial. Ann Emerg Med. 2017;69(6):743–51.PubMedCrossRefGoogle Scholar
  56. 56.
    Tepper SJ, et al. Acute treatment of intractable migraine with sphenopalatine ganglion electrical stimulation. Headache. 2009;49(7):983–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Bratbak DF, et al. Pilot study of sphenopalatine injection of onabotulinumtoxinA for the treatment of intractable chronic migraine. Cephalalgia. 2017;37(4):356–64.PubMedCrossRefGoogle Scholar
  58. 58.
    Kanai A, et al. Intranasal lidocaine 8% spray for second-division trigeminal neuralgia. Br J Anaesth. 2006;97(4):559–63.PubMedCrossRefGoogle Scholar
  59. 59.
    Kastler A, et al. Alcohol percutaneous neurolysis of the sphenopalatine ganglion in the management of refractory cranio-facial pain. Neuroradiology. 2014;56(7):589–96.PubMedCrossRefGoogle Scholar
  60. 60.
    Schaffer JT, et al. Noninvasive sphenopalatine ganglion block for acute headache in the emergency department: a randomized placebo-controlled trial. Ann Emerg Med. 2015;65(5):503–10.PubMedCrossRefGoogle Scholar
  61. 61.
    Walters BB, Gillespie SA, Moskowitz MA. Cerebrovascular projections from the sphenopalatine and otic ganglia to the middle cerebral artery of the cat. Stroke. 1986;17(3):488–94.PubMedCrossRefGoogle Scholar
  62. 62.
    Suzuki N, Hardebo JE, Owman C. Origins and pathways of cerebrovascular vasoactive intestinal polypeptide-positive nerves in rat. J Cereb Blood Flow Metab. 1988;8(5):697–712.PubMedCrossRefGoogle Scholar
  63. 63.
    Uddman R, Hara H, Edvinsson L. Neuronal pathways to the rat middle meningeal artery revealed by retrograde tracing and immunocytochemistry. J Auton Nerv Syst. 1989;26(1):69–75.PubMedCrossRefGoogle Scholar
  64. 64.
    Suzuki N, Hardebo JE. Anatomical basis for a parasympathetic and sensory innervation of the intracranial segment of the internal carotid artery in man. Possible implication for vascular headache. J Neurol Sci. 1991;104(1):19–31.PubMedCrossRefGoogle Scholar
  65. 65.
    Goadsby PJ, Lambert GA, Lance JW. The peripheral pathway for extracranial vasodilatation in the cat. J Auton Nerv Syst. 1984;10(2):145–55.PubMedCrossRefGoogle Scholar
  66. 66.
    Suzuki N, Hardebo JE, Owman C. Origins and pathways of choline acetyltransferase-positive parasympathetic nerve fibers to cerebral vessels in rat. J Cereb Blood Flow Metab. 1990;10(3):399–408.PubMedCrossRefGoogle Scholar
  67. 67.
    Uddman R, et al. Neuronal messengers and peptide receptors in the human sphenopalatine and otic ganglia. Brain Res. 1999;826(2):193–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Tuka B, et al. Release of PACAP-38 in episodic cluster headache patients—an exploratory study. J Headache Pain. 2016;17(1):69.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Edvinsson L, Uddman R. Neurobiology in primary headaches. Brain Res Brain Res Rev. 2005;48(3):438–56.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Neuromedicine and Movement ScienceNTNU—Norwegian University of Science and TechnologyTrondheimNorway
  2. 2.Department of Neurology and Clinical NeurophysiologySt. Olavs HospitalTrondheimNorway
  3. 3.Neurological Clinic, Danish Headache Centre, Rigshospitalet-GlostrupUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations