Skip to main content

Constructing Backbone Curves from Free-Decay Vibrations Data in Multi-Degrees of Freedom Oscillatory Systems

  • Conference paper
  • First Online:
Book cover Nonlinear Structures and Systems, Volume 1

Abstract

Backbone curves are often the best representation of the nonlinear behavior for the vibrations of mechanical systems. Several approaches for obtaining them are present in literature, either analytical, numerical or experimental ones. However, they often make assumptions that unavoidably limit the range of applicability, such as the dynamics of the underlying conservative system and the modeling of damping terms. Here, we describe a mathematical theory and the corresponding numerical methodology that is able to rigorously extract backbone curves from free-decay vibrations data and that can overcome some of the main limitations of existing methods. We illustrate our findings with synthetic and real experiment vibration measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley (2007)

    Google Scholar 

  2. Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes, part I: A useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009)

    Article  Google Scholar 

  3. Lyapunov, A.M.: The general problem of the stability of motion. Int. J. Control. 55(3), 531–534 (1992)

    Article  MathSciNet  Google Scholar 

  4. Szalai, R., Ehrhardt, D., Haller, G.: Nonlinear model identification and spectral submanifolds for multi-degree-of-freedom mechanical vibrations. Proc. Roy. Soc. Lond A. 473(2202), 32 (2017)

    Article  MathSciNet  Google Scholar 

  5. Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems, Volume 59 of Applied Mathematical Sciences, 2nd edn. Springer-Verlag, New York (2007)

    MATH  Google Scholar 

  6. Doedel, R.C., Paffenroth, E.J., Champneys, A.R., Fairgrieve, T.F., Kutnetsov, Y.A., Oldeman, B.E., Sandstede, B., Wang, X.J.: Auto2000: Continuation and Bifurcation Software for Ordinary Differential Equations

    Google Scholar 

  7. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: Matcont: a Matlab package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29(2), 141–164 (2003)

    Article  MathSciNet  Google Scholar 

  8. Dankowicz, H., Schilder, F.: Recipes for Continuation. Society for Industrial and Applied Mathematics (2013)

    Google Scholar 

  9. Neild, S.A., Wagg, D.J.: Applying the method of normal forms to second-order nonlinear vibration problems. Proc. Roy. Soc. Lond. A. 467(2128), 1141–1163 (2011)

    Article  MathSciNet  Google Scholar 

  10. Renson, L., Kerschen, G., Cochelin, B.: Numerical computation of nonlinear normal modes in mechanical engineering. J. Sound Vib. 364, 177–206 (2016)

    Article  Google Scholar 

  11. Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.C.: Nonlinear normal modes, part II: Toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23(1), 195–216 (2009). Special Issue: Nonlinear Structural Dynamics

    Article  Google Scholar 

  12. Noël, J.P., Kerschen, G.: Nonlinear system identification in structural dynamics: 10 more years of progress. Mech. Syst. Signal Process. 83, 2–35 (2017)

    Article  Google Scholar 

  13. Peeters, M., Kerschen, G., Golinval, J.C.: Dynamic testing of nonlinear vibrating structures using nonlinear normal modes. J. Sound Vib. 330(3), 486–509 (2011)

    Article  Google Scholar 

  14. Peeters, M., Kerschen, G., Golinval, J.C.: Modal testing of nonlinear vibrating structures based on nonlinear normal modes: experimental demonstration. Mech. Syst. Signal Process. 25(4), 1227–1247 (2011)

    Article  Google Scholar 

  15. Londoño, J.M., Neild, S.A., Cooper, J.E.: Identification of backbone curves of nonlinear systems from resonance decay responses. J. Sound Vib. 348, 224–238 (2015)

    Article  Google Scholar 

  16. Renson, L., Gonzalez-Buelga, A., Barton, D.A.W., Neild, S.A.: Robust identification of backbone curves using control-based continuation. J. Sound Vib. 367, 145–158 (2016)

    Article  Google Scholar 

  17. Haller, G., Ponsioen, S.: Nonlinear normal modes and spectral submanifolds: existence, uniqueness and use in model reduction. Nonlinear Dynam. 86(3), 1493–1534 (2016)

    Article  MathSciNet  Google Scholar 

  18. Breunung, T., Haller, G.: Explicit backbone curves from spectral submanifolds of forced-damped nonlinear mechanical systems. Proc. Roy. Soc. Lond. A. 474(2213), (2018)

    Google Scholar 

  19. Avitabile, P.: Modal Testing: A Practitioner’s Guide. Wiley (2017)

    Google Scholar 

  20. Billings, S.A.: Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains. Wiley (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Cenedese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cenedese, M., Haller, G. (2020). Constructing Backbone Curves from Free-Decay Vibrations Data in Multi-Degrees of Freedom Oscillatory Systems. In: Kerschen, G., Brake, M., Renson, L. (eds) Nonlinear Structures and Systems, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-12391-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12391-8_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12390-1

  • Online ISBN: 978-3-030-12391-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics