Advertisement

Automated Gland Segmentation Leading to Cancer Detection for Colorectal Biopsy Images

  • Syed Fawad Hussain Naqvi
  • Salahuddin Ayubi
  • Ammara NasimEmail author
  • Zeeshan Zafar
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 70)

Abstract

Glandular formation and morphology along with the architectural appearance of glands exhibit significant importance in the detection and prognosis of inflammatory bowel disease and colorectal cancer. The extracted glandular information from segmentation of histopathology images facilitate the pathologists to grade the aggressiveness of tumor. Manual segmentation and classification of glands is often time consuming due to large datasets from a single patient. We are presenting an algorithm that can automate the segmentation as well as classification of H and E (hematoxylin and eosin) stained colorectal cancer histopathology images. In comparison to research being conducted on cancers like prostate and breast, the literature for colorectal cancer segmentation is scarce. Inter as well as intra-gland variability and cellular heterogeneity has made this a strenuous problem. The proposed approach includes intensity-based information, morphological operations along with the Deep Convolutional Neural network (CNN) to evaluate the malignancy of tumor. This method is presented to outpace the traditional algorithms. We used transfer learning technique to train AlexNet for classification. The dataset is taken from MCCAI GlaS challenge which contains total 165 images in which 80 are benign and 85 are malignant. Our algorithm is successful in classification of malignancy with an accuracy of 90.40, Sensitivity 89% and Specificity of 91%.

Keywords

Colorectal cancer Malignant Benign Glands Segmentation Convolutional neural networks (CNN) 

Notes

Acknowledgements

We are thankful to MCCAI GlaS 2015 contest for providing us with the relevant data [6].

References

  1. 1.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)CrossRefGoogle Scholar
  2. 2.
    Tao, W., Jin, H., Zhang, Y.: Color image segmentation based on mean shift and normalized cuts. IEEE Trans. Syst. Man. Cybern. B. Cybern. 37(5), 1382–1389 (2007)CrossRefGoogle Scholar
  3. 3.
    Xu, J., Madabhushi, A., Janowczyk, A., Chandran, S.: A weighted mean shift, normalized cuts initialized color gradient based geodesic active contour model: applications to histopathology image segmentation. In: Proceedings of SPIE, vol. 7623, April 2016, pp. 76230Y–76230Y–12 (2010)Google Scholar
  4. 4.
    Xu, Y., Zhang, J., Eric, I., Chang, C., Lai, M., Tu, Z.: Context-constrained multiple instance learning for histopathology image segmentation. In: International Conference on Medical Image Computing and Computer Intervention, MICCAI, vol. 15, no. Pt 3, pp. 623–30 (Jan 2012)CrossRefGoogle Scholar
  5. 5.
    Gao, Y., Liu, W., Arjun, S., Zhu, L., Ratner, V., Kurc, T., Saltz, J., Tannenbaum, A.: Multi-scale learning based segmentation of glands in digital colorectal pathology images. In: Proceedings of SPIE, vol. 9791. pp. 97910M–97910M–6 (2016)Google Scholar
  6. 6.
    Sirinukunwattana, K., Pluim, J.P.W., Chen, H., Qi, X., Heng, P.-A., Guo, Y.B., Wang, L.Y., Matuszewski, B.J., Bruni, E., Sanchez, U., Böhm, A., Ronneberger, O., Ben Cheikh, B., Racoceanu, D., Kainz, P., Pfeiffer, M., Urschler, M., Snead, D.R.J., Rajpoot, N.M.: Gland segmentation in colon histology images: the GlaS challenge contest, pp. 1–24 (2016)Google Scholar
  7. 7.
    Monaco, J., Tomaszewski, J., Feldman, M., Hagemann, I., Moradi, M., et al.: High-throughput detection of prostate cancer in histological sections using probabilistic pairwise Markov models. Med. Image Anal. 14, 617–629 (2010)CrossRefGoogle Scholar
  8. 8.
    Doyle, S., Feldman, M., Tomaszewski, J., Madabhushi, A.: A boosted Bayesian multi-resolution classifier for prostate cancer detection from digitized needle biopsies. IEEE Trans. Biomed. Eng. 59, 1205–1218 (2012) (F) Article title. Journal 2(5), 99–110 (2016)CrossRefGoogle Scholar
  9. 9.
    Nguyen, K., Jain, A., Sabata, B.: Prostate cancer detection: fusion of cytological and textural features. J. Pathol. Inform. 2, 2–3 (2011)CrossRefGoogle Scholar
  10. 10.
    Wu, H.-S., Xu, R., Harpaz, N., Burstein, D., Gil, J.: Segmentation of intestinal gland images with iterative region growing. J. Microsc. 220(3), 190–204 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Farjam, R., et al.: An image analysis approach for automatic malignancy determination of prostate pathological images. Cytom. Part B: Clin. Cytom. 72(4), 227–240 (2007)CrossRefGoogle Scholar
  12. 12.
    Cruz-Roa, A., Basavanhally, A., González, F., Gilmore, H., Feldman, M., Ganesan, S., et al.: Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. SPIE Med. Imaging 9041, 904103–904103-15 (2014)CrossRefGoogle Scholar
  13. 13.
    Veta, M., van Diest, P.J., Willems, S.M., Wang, H., Madabhushi, A., Cruz-Roa, A., et al.: Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med. Image Anal. 20, 237–248 (2015)CrossRefGoogle Scholar
  14. 14.
    Roux, L., Racoceanu, D., Loménie, N., Kulikova, M., Irshad, H., Klossa, J., et al.: Mitosis detection in breast cancer histological images An ICPR 2012 contest. J Pathol. Inform. 4, 8 (2013)CrossRefGoogle Scholar
  15. 15.
    Ciresan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. Med. Image Comput. Comput. Assist. Interv. 16(Pt 2), 411–418 (2013)Google Scholar
  16. 16.
    Chen, T., Chefd’hotel, C.: Deep learning based automatic immune cell detection for immunohistochemistry images. In: Wu, G., Zhang, D., Zhou, L., (eds.) Machine Learning in Medical Imaging. (Lecture Notes in Computer Science), vol. 8689, pp. 17–24. Springer International Publishing, Berlin (2014)Google Scholar
  17. 17.
    LeCun, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  18. 18.
    Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195(1), 215–243 (1968)CrossRefGoogle Scholar
  19. 19.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)CrossRefGoogle Scholar
  20. 20.
    Nasim, A., Hassan, T., Akram, M.U., Hassan, B., et al.: Automated identification of colorectal glands morphology from benign images. In: International Conference on IP, Computer Vision, and Pattern Recognition IPCV’17 (2017)Google Scholar
  21. 21.
    Alexnet toolbox at Mathworks [ONLINE] Available at: https://www.mathworks.com/help/nnet/ref/alexnet.html. Accessed 13 April 2018

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Syed Fawad Hussain Naqvi
    • 1
  • Salahuddin Ayubi
    • 1
  • Ammara Nasim
    • 1
    Email author
  • Zeeshan Zafar
    • 1
  1. 1.Department of Electrical EngineeringBahria UniversityIslamabadPakistan

Personalised recommendations