Skip to main content

Ring Theoretic Key Exchange for Homomorphic Encryption

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 70))

Abstract

We propose a key exchange protocol that works in a polynomial ideal setting. We do this so that the key can be used for a homomorphic cryptography protocol. The advantage of using key exchange over a public key system is that a large proportion of the process needs to be carried out only once instead of needing a more complicated encryption function to use for each piece of data. Polynomials rings are an appropriate choice of structure for this particular type of scheme as they allow universal computation. This paper will examine how we can perform computation correctly on cipher texts and address some of the potential weaknesses of such a process.

This work was supported by the Engineering and Physical Sciences Research Council, Centre for Doctoral Training in Cloud Computing for Big Data [grant number EP/L015358/1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L. A. M. L. D. Rivest, R. L.: On Data Banks and Privacy Homomorphisms. Foundations of secure computation (1978)

    Google Scholar 

  2. X. P. R. a. B. E. Yi: Homomorphic Encryption and Applications. Springer (2014)

    Google Scholar 

  3. F. a. Z. P. Hao: The power of anonymous veto in public discussion. In: Transactions on Computational Science, Springer, Berlin (2009)

    Chapter  Google Scholar 

  4. L. K. V. V. Naehrig, M.: Can homomorphic encryption be practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop (2011)

    Google Scholar 

  5. G. A.: Google tests new crypto in chrome to fend off quantum attacks. www.wired.com/2016/07/google-tests-new-crypto-chrome-fend-off-quantum-attacks/ (2016)

  6. V. d. P. J., Lattice-Based Cryptography. Eindhoven (2011)

    Google Scholar 

  7. C. J. E. P. R. M. N. W. E. M. S. B. H. a. Z. N. Curino: Relational Cloud: A Database-as-a-Service for the Cloud (2011)

    Google Scholar 

  8. Buchberger, B.: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. J. Symbolic Comput. 475–511 (1965)

    Google Scholar 

  9. W. a. L. P. Adams.: An Introduction to Grobner Bases. American Mathematical Society (1994)

    Google Scholar 

  10. Rai, T.: Infinite Grobner Bases and Noncommutative Polly Cracker Cryptosystems (2004)

    Google Scholar 

  11. Garber, D.: Braid group cryptography. In: Braids: Introductory Lectures on Braids, Configurations and Their Applications, pp. 329–403 (2010)

    Chapter  Google Scholar 

  12. Gentry, C.: A Fully Homomorphic Encryption Scheme. Stanford University (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Aiston .

Editor information

Editors and Affiliations

Appendix

Appendix

To prevent tedious amounts of expanding brackets, we will keep a lot of the polynomials factored and we will also make the substitutions

$$ \begin{array}{*{20}c} {A = xyxzyx, B = xy^{2} zx, C = zyxyz, D = z^{2} xyz,} \\ {W = yxy.} \\ \end{array} $$

This means that we have the public ideal \( \left\langle { \left( {W + z} \right)^{2} } \right\rangle \) that we can use to reduce terms while in the cloud. We will also have the private ideal \( \left\langle {\left( {A + B + C + D} \right)\left( {W + z} \right) - 1,~\left( {W + z} \right)\left( {A + B + C + D} \right) - 1} \right\rangle \) to be used for further reduction once offline. Now let’s do a simple calculation.

$$ \begin{array}{*{20}c} {\left( {Enc\left( x \right) + Enc\left( y \right)} \right)*Enc\left( z \right)} \\ { = (\left( {A + B + C + D} \right)x\left( {W + z} \right) + \left( {W + z} \right)x\left( {A + B + C + D} \right)} \\ { + \left( {A + B + C + D} \right)y\left( {W + z} \right) + \left( {W + z} \right)y\left( {A + B + C + D} \right))} \\ {*\left( {\left( {A + B + C + D} \right)z\left( {W + z} \right) + \left( {W + z} \right)z\left( {A + B + C + D} \right)} \right)} \\ { = \left( {\left( {A + B + C + D} \right)\left( {x + y} \right)\left( {W + z} \right) + \left( {W + z} \right)\left( {x + y} \right)\left( {A + B + C + D} \right)} \right)} \\ {*\left( {\left( {A + B + C + D} \right)z\left( {W + z} \right) + \left( {W + z} \right)z\left( {A + B + C + D} \right)} \right)} \\ { = \left( {A + B + C + D} \right)\left( {x + y} \right)\left( {W + z} \right)\left( {A + B + C + D} \right)z\left( {W + z} \right)} \\ { + \left( {A + B + C + D} \right)\left( {x + y} \right)\left( {W + z} \right)^{2} z\left( {A + B + C + D} \right)} \\ { + \left( {W + z} \right)\left( {x + y} \right)\left( {A + B + C + D} \right)^{2} z\left( {W + z} \right)} \\ { + \left( {W + z} \right)\left( {x + y} \right)\left( {A + B + C + D} \right)\left( {W + z} \right)z\left( {A + B + C + D} \right).} \\ \end{array} $$

Our public ideal space kills off multiples of \( \left( {W + z} \right)^{2} \), so that leaves us with

$$ \begin{array}{*{20}c} {\left( {A + B + C + D} \right)\left( {x + y} \right)\left( {W + z} \right)\left( {A + B + C + D} \right)z\left( {W + z} \right)} \\ { + \left( {W + z} \right)\left( {x + y} \right)\left( {A + B + C + D} \right)^{2} z\left( {W + z} \right)} \\ { + \left( {W + z} \right)\left( {x + y} \right)\left( {A + B + C + D} \right)\left( {W + z} \right)z\left( {A + B + C + D} \right).} \\ \end{array} $$

Performing the decryption method, we have

$$ \begin{array}{*{20}c} {Dec\left( {\left( {Enc\left( x \right) + Enc\left( y \right)} \right)*Enc\left( z \right)} \right)} \\ {\left( {W + z} \right)(\left( {A + B + C + D} \right)\left( {x + y} \right)\left( {W + z} \right)\left( {A + B + C + D} \right)z\left( {W + z} \right)} \\ { + \left( {W + z} \right)\left( {x + y} \right)\left( {A + B + C + D} \right)^{2} z\left( {W + z} \right)} \\ { + \left( {W + z} \right)\left( {x + y} \right)\left( {A + B + C + D} \right)\left( {W + z} \right)z\left( {A + B + C + D} \right))\left( {A + B + C + D} \right)} \\ { = \left( {W + z} \right)\left( {A + B + C + D} \right)\left( {x + y} \right)\left( {W + z} \right)\left( {A + B + C + D} \right)z\left( {W + z} \right)\left( {A + B + C + D} \right)} \\ { + \left( {W + z} \right)^{2} \left( {x + y} \right)\left( {A + B + C + D} \right)^{2} z\left( {W + z} \right)\left( {A + B + C + D} \right)} \\ { + \left( {W + z} \right)^{2} \left( {x + y} \right)\left( {A + B + C + D} \right)\left( {W + z} \right)z\left( {A + B + C + D} \right)^{2} .} \\ \end{array} $$

Once again reducing according to our public ideal we are left with

$$ \left( {W + z} \right)\left( {A + B + C + D} \right)\left( {x + y} \right)\left( {W + z} \right)\left( {A + B + C + D} \right)z\left( {W + z} \right)\left( {A + B + C + D} \right). $$

Now that we are offline we can use the private ideal which gives us

$$ 1*\left( {x + y} \right)*1*z*1 = \left( {x + y} \right)*z, $$

as required.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aiston, J. (2020). Ring Theoretic Key Exchange for Homomorphic Encryption. In: Arai, K., Bhatia, R. (eds) Advances in Information and Communication. FICC 2019. Lecture Notes in Networks and Systems, vol 70. Springer, Cham. https://doi.org/10.1007/978-3-030-12385-7_54

Download citation

Publish with us

Policies and ethics