Advertisement

Facial Expression Recognition and Analysis of Interclass False Positives Using CNN

  • Junaid BaberEmail author
  • Maheen Bakhtyar
  • Kafil Uddin Ahmed
  • Waheed Noor
  • Varsha Devi
  • Abdul Sammad
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 70)

Abstract

In this paper, the performance of Facial Expression Recognition (FER) using Deep Convolutional Neural Network (DCNN) model is evaluated. The expressions include Angry, Disgust, Fear, Happy, Sad, Surprise, and Neutral. In addition to performance evaluation, the analysis on Interclass false positives are also discussed which helps to analyze the underlying challenges to improve the model. All classifiers give low performance on Fer2013 datasets. DCNN gives 54.46% accuracy on test and 89.52% on training set, whereas, in case of different kernels of Support Vector Machines (SVM), the highest accuracy is 45% using cubic kernel on training set. Experiments show that certain facial expressions have more false positives and few of them are very dominant. In case of Disgust expression, it has Angry as dominant false positive. Based on false positives analysis, binary classifiers can be trained to improve the accuracy of the expressions with dominant false positives. Experiments on Fer2013 dataset confirms that the accuracy of expression Disgust is improved by piping the binary classifiers, Disgust vs. Angry, to existing DCNN of multi-class.

Keywords

DCNN Facial expression recognition Interclass analysis Smart classroom 

Notes

Acknowledgements

This research is supported by University of Balochistan under the project UBRF with grant number UOB/ORIC/17/UBRF-17/022, and Higher Education Commission of Pakistan (HEC).

References

  1. 1.
    Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended Cohn-Kanade dataset (CK+): a complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 94–101. IEEE, New York (2010)Google Scholar
  2. 2.
    Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007)CrossRefGoogle Scholar
  3. 3.
    Ojansivu, V., Heikkilä, J.: Blur insensitive texture classification using local phase quantization. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) Image and Signal Processing, pp. 236–243 (2008 )Google Scholar
  4. 4.
    Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 401–408 (2007)Google Scholar
  5. 5.
    Yu, Z., Zhang, C.: Image based static facial expression recognition with multiple deep network learning. In: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pp. 435–442 (2015)Google Scholar
  6. 6.
    Dhall, A., Goecke, R., Joshi, J., Wagner, M., Gedeon, T.: Emotion recognition in the wild challenge 2013. In: Proceedings of the 15th ACM on International Conference on Multimodal Interaction, pp. 509–516. ACM, New York (2013)Google Scholar
  7. 7.
    Dhall, A., Goecke, R., Joshi, J., Sikka, K., Gedeon, T.: Emotion recognition in the wild challenge 2014: baseline, data and protocol. In: Proceedings of the 16th International Conference on Multimodal Interaction, pp. 461–466. ACM, New York (2014)Google Scholar
  8. 8.
    Sikka, K., Dykstra, K., Sathyanarayana, S., Littlewort, G., Bartlett, M.: Multiple kernel learning for emotion recognition in the wild. In: Proceedings of the 15th ACM on International Conference on Multimodal Interaction, pp. 517–524. ACM, New York (2013)Google Scholar
  9. 9.
    Liu, M., Wang, R., Huang, Z., Shan, S., Chen, X.: Partial least squares regression on Grassmannian manifold for emotion recognition. In: Proceedings of the 15th ACM on International Conference on Multimodal Interaction, pp. 525–530. ACM, New York (2013)Google Scholar
  10. 10.
    Liu, M., Wang, R., Li, S., Shan, S., Huang, Z., Chen, X.: Combining multiple kernel methods on Riemannian manifold for emotion recognition in the wild. In: Proceedings of the 16th International Conference on Multimodal Interaction, pp. 494–501. ACM, New York (2014)Google Scholar
  11. 11.
    Sun, B., Li, L., Zuo, T., Chen, Y., Zhou, G., Wu, X.: Combining multimodal features with hierarchical classifier fusion for emotion recognition in the wild. In: Proceedings of the 16th International Conference on Multimodal Interaction, pp. 481–486. ACM, New York (2014)Google Scholar
  12. 12.
    Zhong, L., Liu, Q., Yang, P., Liu, B., Huang, J., Metaxas, D.N.: Learning active facial patches for expression analysis. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2562–2569. IEEE, New York (2012)Google Scholar
  13. 13.
    Liu, P., Zhou, J.T., Tsang, I.W.-H., Meng, Z., Han, S., Tong, Y.: Feature disentangling machine-a novel approach of feature selection and disentangling in facial expression analysis. In: European Conference on Computer Vision, pp. 151–166. Springer, Berlin (2014)Google Scholar
  14. 14.
    Liu, M., Li, S., Shan, S., Chen, X.: Au-aware deep networks for facial expression recognition. In: 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1–6. IEEE, New York (2013)Google Scholar
  15. 15.
    Jung, H., Lee, S., Park, S., Lee, I., Ahn, C., Kim, J.: Deep temporal appearance-geometry network for facial expression recognition. arXiv preprint arXiv:1503.01532
  16. 16.
    Mollahosseini, A., Chan, D., Mahoor, M.H.: Going deeper in facial expression recognition using deep neural networks. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–10. IEEE, New York (2016)Google Scholar
  17. 17.
    Liu, M., Shan, S., Wang, R., Chen, X.: Learning expressionlets on spatio-temporal manifold for dynamic facial expression recognition. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1749–1756. IEEE, New York (2014)Google Scholar
  18. 18.
    Liu, M., Li, S., Shan, S., Wang, R., Chen, X.: Deeply learning deformable facial action parts model for dynamic expression analysis. In: Asian Conference on Computer Vision, pp. 143–157. Springer, Berlin (2014)Google Scholar
  19. 19.
    Goodfellow, I.J., Erhan, D., Carrier, P.L., Courville, A., Mirza, M., Hamner, B., Cukierski, W., Tang, Y., Thaler, D., Lee, D.-H., Zhou, Y., Ramaiah, C., Feng, F., Li, R., Wang, X., Athanasakis, D., Shawe-Taylor, J., Milakov, M., Park, J., Ionescu, R., Popescu, M., Grozea, C., Bergstra, J., Xie, J., Romaszko, L., Xu, B., Chuang, Z., Bengio, Y.: Challenges in representation learning: a report on three machine learning contests. In: Lee, M., Hirose, A., Hou, Z.-G., Kil, R.M. (eds.) Neural Information Processing, pp. 117–124 (2013)Google Scholar
  20. 20.
    Sanjrani, A.A., Baber, J., Bakhtyar, M., Noor, W., Khalid, M.: Handwritten optical character recognition system for Sindhi numerals. In: 2016 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube), pp. 262–267 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Junaid Baber
    • 1
    Email author
  • Maheen Bakhtyar
    • 1
  • Kafil Uddin Ahmed
    • 1
  • Waheed Noor
    • 1
  • Varsha Devi
    • 2
  • Abdul Sammad
    • 3
  1. 1.Department of CS and ITUniversity of BalochistanQuettaPakistan
  2. 2.University of Grenoble AlpesGrenobleFrance
  3. 3.Department of Computer ScienceHabib UniversityKarachiPakistan

Personalised recommendations