Skip to main content

Searching for Network Modules

  • Conference paper
  • First Online:
Advances in Information and Communication (FICC 2019)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 70))

Included in the following conference series:

  • 1491 Accesses

Abstract

When analyzing complex networks, a key target is to uncover their modular structure, which means searching for a family of node subsets spanning each an exceptionally dense subnetwork. Objective function-based graph clustering procedures such as modularity maximization output a partition of nodes, i.e. a family of pair-wise disjoint subsets, although single nodes are likely to be included in multiple or overlapping modules. Thus in fuzzy clustering approaches each node may be included in different modules with different [0, 1]-ranged memberships. This work proposes a novel type of objective function for graph clustering, in the form of a multilinear polynomial extension whose coefficients are determined by network topology. It may be seen as a potential, taking values on fuzzy clusterings or families of fuzzy subsets of nodes over which every node distributes a unit membership. If suitably parameterized, this potential attains its maximum when every node concentrates its all unit membership on some module. Maximizers thus remain partitions, while the original discrete optimization problem is turned into a continuous version allowing to conceive alternative search strategies. The instance of the problem being a pseudo-Boolean function assigning real-valued cluster scores to node subsets, modularity maximization is employed to exemplify a so-called quadratic form, in that the scores of singletons and pairs also fully determine the scores of larger clusters, while the resulting multilinear polynomial potential function has degree 2. After considering further quadratic instances, different from modularity and obtained by interpreting network topology in alternative manners, a greedy local-search strategy for the continuous framework is analytically compared with an existing greedy agglomerative procedure for the discrete case. Overlapping is finally discussed in terms of multiple runs, i.e. several local searches with different initializations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\mathcal B_k=\sum _{1\le l\le k}\mathcal S_{k,l}\) is the (Bell) number of partitions of a k-set, while \(\mathcal S_{k,l}\) is the Stirling number of the second kind, i.e. the number of partitions of a k-set into l blocks [3, 16, 33].

  2. 2.

    Modularity \(\mathcal Q\) is meant to evaluate modular structures in complex networks, while the modular elements of \((\mathcal P^N,\wedge ,\vee )\) are those partitions \(\hat{P}\) realizing, for all \(Q\in \mathcal P^N\), equality \(r(\hat{P}\wedge Q)+r(\hat{P}\vee Q)=r(\hat{P})+r(Q)\), where \(r(P)=n-|P|\) is the rank (see [3] on modular lattices/lattice functions).

  3. 3.

    The terminology and notation used here are standard in graph theory [11].

  4. 4.

    As usual colon ‘:’ stands for ‘such that’.

  5. 5.

    \(\varOmega (\mathcal F)\) is a generaliziation of the field \(2^P\) of subsets generated by partitions P, where \(2^{P_{\bot }}=2^N\), while \(2^{P^{\top }}=\{\emptyset ,N\}\).

References

  1. Adamcsek, B., Palla, G., Farkas, I.J., Derényi, I., Vicsek, T.: CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22(8), 1021–1023 (2006)

    Article  Google Scholar 

  2. Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale complexity in networks. Nature 466, 761–764 (2010)

    Article  Google Scholar 

  3. Aigner, M.: Combinatorial Theory. Springer, Berlin (1997)

    Book  Google Scholar 

  4. Altaf-Ul-Amin, M., Shinbo, Y., Mihara, K., Kurokawa, K., Kanaya, S.: Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinform. 7(207) (2006)

    Google Scholar 

  5. Asur, S., Ucar, D., Parthasarathy, S.: An ensemble framework for clustering protein-protein interaction networks. Bioinformatics 23, i29–i40 (2007)

    Article  Google Scholar 

  6. Bollobás, B., Riordan, O.M.: Mathematical results on scale-free random graphs. In: Bornholdt, S., Schuster, H.G. (eds.) Handbook of Graphs and Networks: from the Genome to the Internet, pp. 1–34. Wiley, Berlin (2003)

    MATH  Google Scholar 

  7. Boros, E., Hammer, P.: Pseudo-Boolean optimization. Discrete Appl. Math. 123, 155–225 (2002)

    Article  MathSciNet  Google Scholar 

  8. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20(2), 172–188 (2007)

    Article  Google Scholar 

  9. Brower, A.E., Haemers, W.H.: Spectra of Graphs. Springer, New York (2011)

    Google Scholar 

  10. Chakrabarti, M., Heath, L., Ramakrishnan, N.: New methods to generate massive synthetic networks. cs. SI, arXiv:1705.08473 v1 (2017)

  11. Diestel, R.: Graph Theory. Springer, New York (2010)

    Book  Google Scholar 

  12. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  13. Freeman, T.C., Goldovsky, L., Brosch, M., van Dongen, S., Mazire, P., Grocock, R.J., Freilich, S., Thornton, J., Enright, A.J.: Construction, visualisation, and clustering of transcription networks from microarray expression data. PLOS Comp. Biol. 3(10–e206), 2032–2042 (2007)

    Article  MathSciNet  Google Scholar 

  14. Gilboa, I., Lehrer, E.: Global games. Int. J. Game Theory 20, 120–147 (1990)

    MathSciNet  MATH  Google Scholar 

  15. Gilboa, I., Lehrer, E.: The value of information—an axiomatic approach. J. Math. Econ. 20(5), 443–459 (1991)

    Article  MathSciNet  Google Scholar 

  16. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics—A Foundation for Computer Science, 2nd edn. Addison-Wesley, Reading (1994)

    Google Scholar 

  17. Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure in complex networks. New J. Phys. 11(3), 033015 (2009)

    Article  Google Scholar 

  18. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

    Article  Google Scholar 

  19. Lei, X., Wu, S., Ge, L., Zhang, A.: Clustering and overlapping modules detection in PPI network based on IBFO. Proteomics 13(2), 278–290 (2013)

    Article  Google Scholar 

  20. Li, Y., Shang, Y., Yang, Y.: Clustering coefficients of large networks. Inf. Sci. 382–383, 350–358 (2017)

    Article  MathSciNet  Google Scholar 

  21. Miyamoto, S., Ichihashi, H., Honda, K.: Algorithms for Fuzzy Clustering. Springer, Berlin (2008)

    MATH  Google Scholar 

  22. Nepusz, T., Petróczi, A., Négyessy, L., Baszó, F.: Fuzzy communities and the concept of bridgeness in complex networks. Phys. Rev. E 77(1), 016107 (2008)

    Article  MathSciNet  Google Scholar 

  23. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  Google Scholar 

  24. Newman, M.E.J.: Fast algorithm for detecting communities in networks. Phys. Rev. E 69(6), 066133 (2004)

    Article  Google Scholar 

  25. Newman, M.E.J.: Modularity and community structure in networks. PNAS 103, 8577–8582 (2006)

    Article  Google Scholar 

  26. Newman, M.E.J.: Random graphs with clustering. Phys. Rev. Lett. 103(5), 058701(4) (2009)

    Google Scholar 

  27. Newman, M.E.J., Barabási, A.L., Watts, D.J.: The Structure and Dynamics of Networks. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  28. Newman, M.E.J., Park, J.: Why social networks are different from other types of networks. Phys. Rev. E 68(3), 036122 (2003)

    Article  Google Scholar 

  29. Pereira-Leal, J.B., Enright, A.J., Ouzounis, C.A.: Detection of functional modules from protein interaction networks. PROTEINS: Struct. Funct. Bioinform. 54, 49–57 (2004)

    Article  Google Scholar 

  30. Reichardt, J., Bornholdt, S.: Detecting fuzzy community structures in complex networks with a Potts model. Phys. Rev. Lett. 93(21), 218701 (2004)

    Article  Google Scholar 

  31. Rossi, G.: Multilinear objective function-based clustering. In: Proceedings of 7th IJCCI, vol. 2. Fuzzy Computation Theory and Applications, pp. 141–149 (2015)

    Google Scholar 

  32. Rossi, G.: Near-Boolean optimization—a continuous approach to set packing and partitioning. In: LNCS 10163 Pattern Recognition Applications and Methods, pp. 60–87. Springer (2017)

    Google Scholar 

  33. Rota, G.C.: The number of partitions of a set. Am. Math. Monthly 71, 499–504 (1964)

    Article  MathSciNet  Google Scholar 

  34. Rota, G.C.: On the foundations of combinatorial theory I: theory of Möbius functions. Z. Wahrscheinlichkeitsrechnung u. verw. Geb. 2, 340–368 (1964)

    Google Scholar 

  35. Rotta, R., Noack, A.: Multilevel local search clustering algorithms for modularity clustering. ACM J. Exp. Algorithmics 16(2), 2.3:1–27 (2011)

    Article  MathSciNet  Google Scholar 

  36. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1, 27–64 (2007)

    Article  Google Scholar 

  37. Schmidt, M.C., Samatova, N.F., Thomas, K., Park, B.H.: A scalable, parallel algorithm for maximal clique enumeration. J. Parallel Distrib. Comput. 69(4), 417–428 (2009)

    Article  Google Scholar 

  38. Sharan, R., Ulitsky, I., Shamir, R.: Network-based prediction of protein function. Mol. Syst. Biol. 3, 88 (2007)

    Article  Google Scholar 

  39. Stanley, R.: Modular elements of geometric lattices. Algebra Universalis 1, 214–217 (1971)

    Article  MathSciNet  Google Scholar 

  40. Szalay-Bekő, M., Palotai, R., Szappanos, B., Kovás, I.A., Papp, B., Csermely, P.: Hierarchical layers of overlapping network modules and community centrality. Bioinformatics 28(16), 2202–2204 (2012)

    Article  Google Scholar 

  41. Vlasblom, J., Wodak, S.J.: Markov clustering versus affinity propagation for the partitioning of protein interaction graphs. BMC Bioinform. 10, 99 (2009)

    Article  Google Scholar 

  42. Wang, J., Run, J., Li, M., Wu, F.X.: Identification of hierarchical and overlapping functional modules in PPI networks. IEEE Trans. Nanobiosci. 11(4), 386–393 (2012)

    Article  Google Scholar 

  43. Wu, H., Gao, L., Dong, J., Jang, X.: Detecting overlapping protein complexes by rough-fuzzy clustering in protein-protein networks. Plos ONE 9(3–e91856) (2014)

    Article  Google Scholar 

  44. Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks: the state of the art and a comparative study. ACM Comput. Surv. 45(43), 43:1–43:35 (2012)

    Article  Google Scholar 

  45. Yu, T., Liu, M.: A linear time algorithm for maximal clique enumeration in large sparse graphs. Inf. Process. Lett. 125, 35–40 (2017)

    Article  MathSciNet  Google Scholar 

  46. Zhang, S., Wang, R.S., Zhang, X.S.: Identification of overlapping community structure in complex networks using fuzzy c-means clustering. Phisica A 374, 483–490 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rossi, G. (2020). Searching for Network Modules. In: Arai, K., Bhatia, R. (eds) Advances in Information and Communication. FICC 2019. Lecture Notes in Networks and Systems, vol 70. Springer, Cham. https://doi.org/10.1007/978-3-030-12385-7_42

Download citation

Publish with us

Policies and ethics