Advertisement

A Secure Scalable Life-Long Learning Based on Multiagent Framework Using Cloud Computing

  • Ghalib Ahmad Tahir
  • Sundus Abrar
  • Loo Chu KiongEmail author
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 70)

Abstract

The major problem on the road to artificial intelligence is the development of lifelong learning systems. They have the ability to learn new concepts incrementally overtime. They are also able to allocate required resources dynamically without human intervention and are able to store data securely. In this work we have extended the incremental classifier and representation learning method known as iCaRL to meet this criterion. The proposed solution is able to learn strong classifiers and a data representation simultaneously. It is able to allocate an optimal scaling plan to meet its resource requirements without human intervention. It securely stores propriety image data by using state of the art interplanetary file system and block chain technology. Finally, it is able to focus on object of interests in an image using attention network. We have shown by experiments on CIFAR-100 and Image net 2012 that it performs better in terms of accuracy than the existing iCaRL system while satisfying criteria of lifelong learning.

Keywords

Machine learning Auto scaling Life long learning Incremental learning 

Notes

Acknowledgements

We would like to extend our acknowledgements to the UM Grand Challenge Project ICT Project No GC003A-14HTM for funding this project.

References

  1. 1.
    Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: Computer Vision and Pattern Recognition (2017)Google Scholar
  2. 2.
    Amazon: Cloud computing. [Online]. Available: https://aws.amazon.com/what-is-cloud-computing/
  3. 3.
    Wikipedia: Cryptography. [Online]. Available: https://en.wikipedia.org/wiki/Cryptography
  4. 4.
    Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification: a comprehensive review. MIT Press Journals (2017)Google Scholar
  5. 5.
    Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, L., Wang, G., Cai, J., Chen, T.: Recent advances in convolutional neural networks. In: Computer Vision and Pattern Recognition (2015)Google Scholar
  6. 6.
    Convolutional neural networks for visual recognition. [Online]. Available: http://cs231n.github.io/convolutional-networks/
  7. 7.
    Yoo, D., Park, S., Lee, J.Y., Paek, A.S., So Kweon, I.: AttentionNet: aggregating weak directions for accurate object detection. In: Computer Vision and Pattern Recognition (2015)Google Scholar
  8. 8.
    Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In Proceedings of British Machine Vision Conference (BMVC) (2014)Google Scholar
  9. 9.
    Kester, Q.A., Nana, L., Pascu, A.C., Gire, S., Eghan, J.M., Quaynor, N.N.: A cryptographic technique for security of medical images in health information systems. Procedia Comput. Sci. 58, 538–543 (2015)CrossRefGoogle Scholar
  10. 10.
    Taitsman, J.K., Grimm, C.M., Agrawal, S.: Protecting patient privacy and data security. In: Perspective, pp. 977–979 (2013)CrossRefGoogle Scholar
  11. 11.
    The great chain of being sure about things, 31 Oct 2015. [Online]. Available: https://www.economist.com/briefing/2015/10/31/the-great-chain-of-being-sure-about-things. Accessed 2017
  12. 12.
    Benet, J.: IPFS—content addressed, versioned, P2P file systemGoogle Scholar
  13. 13.
    Rouse, M.: Asymmetric cryptography. [Online]. Available: https://searchsecurity.techtarget.com/definition/asymmetric-cryptography
  14. 14.
    Liu, X., Gao, C., Li, P.: A comparative analysis of support vector machines and extreme learning machines. Neural Netw. 33, 58–66 (2012)CrossRefGoogle Scholar
  15. 15.
    Bucurica, M., Dogaru, R., Dogaru, I.: A comparison of extreme learning machine and support vector machine classifiers. In IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania (2015)Google Scholar
  16. 16.
    Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)CrossRefGoogle Scholar
  17. 17.
    Liu, Z., Loo, C.K., Masuyama, N., Pasupa, K.: Multiple steps time series prediction by a novel recurrent kernel extreme learning machine approach. In International Conference on Information Technology and Electrical Engineering (2017)Google Scholar
  18. 18.
    Ans, B., Rousset, S.: Avoiding catastrophic forgetting by coupling two reverberating neural networks. C. R. Acad. Sci. 320(12), 989–997 (1997)CrossRefGoogle Scholar
  19. 19.
    French, R.M.: Catastrophic interference in connectionist networks: can it be predicted, can it be prevented? In: Conference on Neural Information Processing Systems (NIPS) (1993)Google Scholar
  20. 20.
    French, R.M.: Catastrophic forgetting in connectionist networks. Trends in Cogn. Sci. 3(4), 128–135 (1999)CrossRefGoogle Scholar
  21. 21.
    Robins, A.V.: Catastrophic forgetting, rehearsal and pseudorehearsal. Connect. Sci. 7(2), 123–146 (1995)CrossRefGoogle Scholar
  22. 22.
    Mensink, T., Verbeek, J., Perronnin, F., Csurka, G.: Distance-based image classification: generalizing to new classes at near-zero cost. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2624–2637 (2013)CrossRefGoogle Scholar
  23. 23.
    Kuzborskij, I., Orabona, F., Caputo, B.: From N to N+1: multiclass transfer incremental learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3358–3365 (2013)Google Scholar
  24. 24.
    Polikar, R., Upda, L., Upda, S.S., Honavar, V.: Learn++: an incremental learning algorithm for supervised neural networks. IEEE Trans. Syst. 31(4), 497–508 (2001)Google Scholar
  25. 25.
    Cauwenberghs, G., Poggio, T.: Incremental and decremental support vector machine learning. In: Proceedings of the 13th International Conference on Neural Information Processing Systems, Denver, CO (2000)Google Scholar
  26. 26.
    Mensink, T., Verbeek, J., Perronnin, F., Csurka, G.: Metric learning for large scale image classification: generalizing to new classes at near-zero cost. In: European Conference on Computer Vision (ECCV) (2012)Google Scholar
  27. 27.
    Ristin, M., Guillaumin, M., Gall, J., Van Gool, L.: Incremental learning of NCM forests for large-scale image classification. In: Conference on Computer Vision and Pattern (2014)Google Scholar
  28. 28.
    Royer, A., Lampert, C.H.: Classifier adaptation at prediction time. In: Conference on Computer Vision and Pattern (2015)Google Scholar
  29. 29.
    Li, F., Wechsler, H.: Open set face recognition using transduction. IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI) (2005)Google Scholar
  30. 30.
    Scheirer, W.J., de Rezende Rocha, A., Sapkota, A., Boult, T.E.: Towards open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI) 36 (2013)Google Scholar
  31. 31.
    Bendale, A., Boult, T.: Towards open world recognition. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2015)Google Scholar
  32. 32.
    Muhlbaier, M.D., Topalis, A., Polikar, R.: Learn++.NC: combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes. IEEE Trans. Neural Netw. 20(1) (2009)CrossRefGoogle Scholar
  33. 33.
    Polikar, R., Upda, L., Upda, S.S., Honavar, V.: Learn++: an incremental learning algorithm for supervised neural networks. IEEE Trans. Syst. Man Cybern. 31(4) (2001)CrossRefGoogle Scholar
  34. 34.
    Lampert, C.H., Nickisch, H., Harmeling, S.: Attribute based classification for zero-shot visual object categorization. IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI) (2013)Google Scholar
  35. 35.
    Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. (2013)Google Scholar
  36. 36.
    Li, Z., Hoiem, D.: Learning without forgetting. In: Computer Vision and Pattern Recognition (2017)Google Scholar
  37. 37.
    Misra, I., Shrivastava, A., Gupta, A., Hebert, M.: Crossstitch networks for multi-task learning. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)Google Scholar
  38. 38.
    Saxena, S., Verbeek, J.: Convolutional neural fabrics. In: Conference on Neural Information Processing Systems (2016)Google Scholar
  39. 39.
    Jung, H., Ju, J., Jung, M., Kim, J.: Less-forgetting learning in deep neural networks. Learning (2016)Google Scholar
  40. 40.
    Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., Hassabis, D., Clopath, C., Kumaran, D., Hadsell, R.: Overcoming catastrophic forgetting in neural networks. Learning (2016)Google Scholar
  41. 41.
    Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. Machine Learning (2015)Google Scholar
  42. 42.
    Wu, Y., Chen, Y., Wang, L., Ye, Y., Liu, Z., Guo, Y., Zhang, Z., Fu, Y.: Incremental classifier learning with generative adversarial networks. In: Computer Vision and Pattern Recognition (2018)Google Scholar
  43. 43.
    Xiao, T., Zhang, J., Yang, K., Peng, Y., Zhang, Z.: Error-driven incremental learning in deep convolutional neural network for large-scale image classification. In: ACM Multimedia (2014)Google Scholar
  44. 44.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient based learning applied to document recognition. In: Proceedings of the IEEE (1998)Google Scholar
  45. 45.
    Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report, University of Toronto (2009)Google Scholar
  46. 46.
    Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115 (2015)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Mnih, V., Heess, N., Graves, A.: Recurrent models of visual attention. In: NIPS (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ghalib Ahmad Tahir
    • 1
  • Sundus Abrar
    • 1
  • Loo Chu Kiong
    • 1
    Email author
  1. 1.University of MalayaKuala LumpurMalaysia

Personalised recommendations