SuperDense Coding Step by Step

  • Lewis Westfall
  • Avery LeiderEmail author
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 70)


Scholars of quantum computing all become familiar with Alice and Bob when learning about superdense coding and entanglement. However, in every research book and video that we found, the assumption is made that the student will automatically understand how those two classical bits at the end come to their values when they started as two qubits. This vagueness was unavoidable when quantum computers were purely theoretical. After exhaustive search of every quantum superdense coding Bob and Alice example in the research literature since late 2017, we found not one that presented evidence from a real quantum computer. However, moving from theory to practice is necessary. Today, using results from a real IBM Q Experience quantum computer, we illustrate each step of the Bob and Alice qubit journey and make it all crystal clear.


SuperDense coding Quantum computing Classical bits Qubits Entanglement IBM Q experience Bob and Alice 


  1. 1.
    Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)Google Scholar
  2. 2.
    Zeilinger, A.: Quantum teleportation, onwards and upwards. Nat. Phys. 14(1), 3 (2018)CrossRefGoogle Scholar
  3. 3.
    Ekert, A.: Quantum cryptography: the power of independence. Nat. Phys. 14(2), 114 (2018)CrossRefGoogle Scholar
  4. 4.
    Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing. Oxford University Press, Oxford (2007)zbMATHGoogle Scholar
  5. 5.
    Rieffel, E., Polak, W.: An introduction to quantum computing for non-physicists. ACM Comput. Surv. (CSUR) 32(3), 300–335 (2000)CrossRefGoogle Scholar
  6. 6.
    Nielsen, M.: Superdense Coding: How to Send Two Bits Using One Qubit (2010). Available at
  7. 7.
    Westfall, L., Leider, A.: Teaching quantum computing. In: Future Technologies Conference (2018) (in press)Google Scholar
  8. 8.
    Nagy, M., Nagy, N.: An information-theoretic perspective on the quantum bit commitment impossibility theorem. Entropy 20(3), 193 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Del Santo, F., Dakić, B.: Two-way communication with a single quantum particle. Phys. Rev. Lett. 120(6), 060503 (2018)CrossRefGoogle Scholar
  10. 10.
    Horodecki, P., Horodecki, M., Horodecki, R.: Zero-knowledge convincing protocol on quantum bit is impossible. Quantum 1, 41 (2017)CrossRefGoogle Scholar
  11. 11.
    Massa, F., Moqanaki, A., Del Santo, F., Dakic, B., Walther, P.: Experimental two-way communication with one photon. (2018) arXiv preprint arXiv:1802.05102
  12. 12.
    Simon, G.K., Huff, B.K., Meier, W.M., Mailloux, L.O., Harrell, L.E.: Quantification of the impact of photon distinguishability on measurement-device-independent quantum key distribution. Electronics 7(4), 49 (2018)CrossRefGoogle Scholar
  13. 13.
    Oppliger, R.: Disillusioning alice and bob. IEEE Secur. Priv. 5, 82–84 (2017)CrossRefGoogle Scholar
  14. 14.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Schröedinger, E.: The present situation in quantum mechanics. Naturwissenschaften 23, 844–849 (1935)CrossRefGoogle Scholar
  16. 16.
    Podoshvedov, S.A.: Quantum teleportation of unknown qubit beyond bell states formalism. (2018) arXiv preprint arXiv:1801.09452
  17. 17.
    Wang, K., Yu, X.-T., Cai, X.-F., Zhang, Z.-C.: Probabilistic teleportation of arbitrary two-qubit quantum state via non-symmetric quantum channel. Entropy 20(4), 238 (2018)CrossRefGoogle Scholar
  18. 18.
    Anaconda, Inc.: (2018).
  19. 19.
    IBM. Q Experience.: (2018).
  20. 20.
    Python Software Foundation.: (2018).
  21. 21.
    Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta, J.M.: Open quantum assembly language. (2017) arXiv preprint arXiv:1707.03429
  22. 22.
    Open Source Quantum Information Science Kit.: (2018).
  23. 23.
    QISKit GitHub.: (2018).
  24. 24.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)CrossRefGoogle Scholar
  25. 25.
    Tappert, C.: Lecture Slides from Quantum Computing Course at Pace University (2018). Available at

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Pace UniversityPleasantvilleUSA

Personalised recommendations