Skip to main content

Sample Preparation Focusing on Plant Omics

  • Chapter
  • First Online:
Emerging Sample Treatments in Proteomics

Abstract

Because of strong impact of omics in many fields, and the complexity of the samples when focusing on areas such as genomics, (metallo)proteomics, metabolomics, among others, it is easy to rationalize the great importance that sample preparation has for achieving reliable results, mainly considering plant science. Then, this chapter points out applications of the sample preparation focusing on such areas, and a diversity of strategies, techniques, and procedures is highlighted and commented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAM:

Ammonium acetate/methanol

ADP:

Adenosine diphosphate

ATP:

Adenosine triphosphate

BIF:

Banded iron formation

CE-ICP-MS:

Capillary electrophoresis-inductively coupled plasma-mass spectrometry

DNA:

Deoxyribonucleic acid

ESI-MS:

Electrospray ionization mass spectrometry

ESI-FAIMS-IT-MS:

Electrospray ionization-high-field asymmetric waveform ion mobility spectrometry-ion trap mass spectrometry

FRET:

Fluorescence resonance energy transfer

FT-ICR MS:

Fourier transform ion cyclotron resonance mass spectrometry

HPLC-DAD:

High-performance liquid chromatography with diode array detector

HPLC-DAD-ESI-MS/MS:

High-performance liquid chromatography with diode array detector coupled to electrospray ionization tandem mass spectrometry

HPLC-UV:

High-performance liquid chromatography with ultraviolet detector

HRE:

Heat reflux extraction

ICAT:

Isotope-coded affinity

ICP-MS:

Inductively coupled plasma mass spectrometry

IEF:

Isoelectric focusing

iTRAQ:

Isobaric tags for relative and absolute quantification

JA:

Jasmonic acid

LC:

Liquid chromatography

LC-ESI-MS/MS:

Liquid chromatography coupled to electrospray ionization tandem mass spectrometry

LC-ICP-MS:

Liquid chromatography-inductively coupled plasma mass spectrometry

LC-MS/MS:

Liquid chromatography tandem-mass spectrometry

LC-MS:

Liquid chromatography mass spectrometry

MAE:

Microwave-assisted extraction

MALDI-MS:

Matrix-assisted laser desorption/ionization coupled mass spectrometry

ME:

Maceration

MS:

Mass spectrometry

MTBE:

Methyl tert-butyl ether

MUDPIT:

Multidimensional protein identification technology

NADP:

Nicotinamide adenine dinucleotide phosphate

nanoESI-Q-TOF:

Nano-electrospray ionization quadrupole time-of-flight

nanoSIMS:

Nanoscale secondary ion mass spectrometry

NMR:

Nuclear magnetic resonance

PARC:

PEI-assisted RuBisCO cleanup

PEI:

Polyethylenimine

PEG:

Polyethylene glycol

pI:

Point isoelectric

PM:

Sodium phosphate/methanol

PR:

Pathogenesis related

PTMs:

Posttranslational modifications

RP-HPLC:

Reversed-phase chromatography

RP-HPLC-UV-ESI-MS:

Reversed-phase high-performance liquid chromatography-ultraviolet-electrospray ionization mass spectrometry

RuBisCO:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

SEC-UV:

Size exclusion chromatography-ultraviolet

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

(TAP)-MS:

Tandem affinity purification mass spectrometry

TCA:

Trichloroacetic acid

UAE:

Ultrasound-assisted extraction

UHPLC-DAD-ESI-MS/MS:

Ultrahigh-performance liquid chromatography with diode array detector coupled to electrospray ionization tandem mass spectrometry

UHPLC-HR-MS:

Ultrahigh-performance liquid chromatography coupled with high-resolution mass spectrometry

WM:

Water/methanol

References

  1. Alvarez S, Naldrett MJ (2016) Plant structure and specificity - challenges and sample preparation consideration for proteomics. In: Mirzaei H, Carrasco M (Eds.) Modern proteomics – Sample preparation, analysis and practical applications. Advances in Experimental Medicine and Biology, vol 919. Springer, Cham, pp 63–82

    Chapter  Google Scholar 

  2. Arruda MAZ (2007) Trends in sample preparation, 1st edn. Nova Science, New York, p 304

    Google Scholar 

  3. Baginsky S (2009) Plant proteomic: concept, application, and novel strategies for data interpretation. Mass Spectrom Rev 28:93–120

    Article  CAS  PubMed  Google Scholar 

  4. Barbosa HS, Souza DLQ, Koolen HHF, Gozzo FC, Arruda MAZ (2013) Sample preparation focusing on plant proteomics: extraction, evaluation and identification of proteins from sunflower seeds. Anal Methods 5(1):116–123

    Article  CAS  Google Scholar 

  5. Barbosa HS, Arruda SCC, Azevedo RA, Arruda MAZ (2012) New insights on proteomics of transgenic soybean seeds: evaluation of differential expressions of enzymes and proteins. Anal Bioanal Chem 402(1):299–314

    Article  CAS  PubMed  Google Scholar 

  6. Battaglia M, Covarrubias AA (2013) Late Embryogenesis Abundant (LEA) protein in legumes. Front Plant Sci 4(6):1–11

    Google Scholar 

  7. Berrada W, Naya A, Iddar A, Bourhim N (2002) Purification and characterization of cytosolic glycerol-3-phosphate dehydrogenase from skeletal muscle of jerboa (Jaculus orientalis). Mol Cell Biochem 231:117–127

    Article  CAS  PubMed  Google Scholar 

  8. Bojko B, Reyes-Garcés N, Bessonneau V, Goryński K, Mousavi F, Silva EAS, Pawliszyn J (2014) Solid-phase microextraction in metabolomics. Trends Anal Chem 61:168–180

    Article  CAS  Google Scholar 

  9. Brancalion ML, Arruda MAZ (2005) Evaluation of medicinal plant decomposition efficiency using microwave ovens and mini-vials for Cd determination by TS-FF-AAS. Michrochimica Acta 150:283–290

    Article  CAS  Google Scholar 

  10. Brown JWS, Flavell RB (1981) Fractionation of wheat gliadin and glutenin subunits by two-dimensional electrophoresis and the role of group 6 and group 2 chromosomes in gliadin synthesis. Theor Appl Genet 59(6):349–359

    Article  CAS  PubMed  Google Scholar 

  11. Cánovas FM, Dumas-Gaoudot E, Recorbet G, Jorrin J, Mock HP, Rossignol M (2004) Plant proteome analysis. Proteomics 4(2):285–298

    Article  PubMed  CAS  Google Scholar 

  12. Chacón-Madrid K, Pessôa GS, Salazar MM, Pereira GAG, Carneiro GMT, Lima TB, Gozzo FC, Arruda MAZ (2017) Evaluation of genetically modified Arabidopsis thaliana through metallomic and enzymatic approaches focusing on mass spectrometry-based platforms. Int J Mass Spectrom 418:6–14

    Article  CAS  Google Scholar 

  13. Chemat F, Rombaut N, Sicaire AG, Meullemiestre A, Fabiano-Tixier AS, Abert-Vian M (2017) Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem 34:540–560

    Article  CAS  PubMed  Google Scholar 

  14. Chemat F, Tomao V, Virot M (2008) Ultrasound-assisted extraction in food analysis. In: Ötles S (ed) Handbook of food analysis instruments. CRC Press, Boca Raton, pp 85–99

    Google Scholar 

  15. Chen L, Jin H, Ding L, Zhang H, Li J, Qu C, Zhang H (2008) Dynamic microwave-assisted extraction of flavonoids from Herba Epimedii. Sep Purif Technol 59(1):50–57

    Article  CAS  Google Scholar 

  16. Chen S, Harmon AC (2006) Advances in plant proteomics. Proteomics 6(20):5504–5516

    Article  CAS  PubMed  Google Scholar 

  17. Chen SX, Shao ZZ (2009) Isolation and diversity analysis of arsenite-resistant bacteria in communities enriched from deep-sea sediments of the Southwest Indian Ocean Ridge. Extremophiles 13:39–48

    Article  CAS  PubMed  Google Scholar 

  18. Chevreux S, Roudeau S, Fraysse A, Carmona A, Devès G, Solari PL, Mounicou S, Lobinski R, Ortega R (2009) Multimodal analysis of metals in copper-zinc superoxide dismutase isoforms separated on electrophoresis gels. Biochimie 91:1324–1327

    Article  CAS  PubMed  Google Scholar 

  19. Dahmoune F, Nayak B, Moussi K, Reminia H, Madani K (2015) Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chem 166:585–595

    Article  CAS  PubMed  Google Scholar 

  20. Damerval C, Vienne D, Zivy M, Thiellemnt H (1986) Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7(1):52–54

    Article  CAS  Google Scholar 

  21. Ernst M, Silva DB, Silva RR, Vêncio RZN, Lopes NP (2014) Mass spectrometry in plant metabolomics strategies: from analytical platforms to data acquisition and processing. Nat Prod Rep 31:784–806

    Article  CAS  PubMed  Google Scholar 

  22. Fang X, Wanga J, Hao J, Li X, Guo N (2015) Simultaneous extraction, identification and quantification of phenolic compounds in Eclipta prostrata using microwave-assisted extraction combined with HPLC–DAD–ESI–MS/MS. Food Chem 188:527–536

    Article  CAS  PubMed  Google Scholar 

  23. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. [Yeast two hybrid]. Nature 340(6230):245–246

    Article  CAS  PubMed  Google Scholar 

  24. Fiol M, Adermann S, Neugart S, Rohn S, Mügge C, Schreiner M, Krumbein A, Kroh LW (2012) Highly glycosylated and acylated flavonols isolated from kale (Brassica oleracea var. sabellica)–structure–antioxidant activity relationship. Food Res Int 47(1):80–89

    Article  CAS  Google Scholar 

  25. Flis P, Ouerdane L, Grillet L, Curie C, Mari S, Lobinski R (2016) Inventory of metal complexes circulating in plant fluids: a reliable method based on HPLC coupled with dual elemental and high-resolution molecular mass spectrometric detection. New Phytol 211:1129–1141

    Article  CAS  PubMed  Google Scholar 

  26. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141–147

    Article  CAS  PubMed  Google Scholar 

  27. Gong Z-G, Hu J, Wu X, Xu Y-J (2017) The recent developments in sample preparation for mass spectrometry-based metabolomics. Crit Rev Anal Chem 47(4):325–331

    Article  CAS  PubMed  Google Scholar 

  28. Görg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4(12):3665–3685

    Article  PubMed  CAS  Google Scholar 

  29. Hao J, Liebeke M, Astle W, Iorio MD, Bundy JG, Ebbels TMD (2014) Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN. Nat Protoc 9(6):1416–1427

    Article  CAS  PubMed  Google Scholar 

  30. Haraguchi H (2004) Metallomics as integrated biometal science. J Anal At Spectrom 19:5–14

    Article  CAS  Google Scholar 

  31. Hemwimon S, Pavasant P, Shotipruk A (2007) Microwave-assisted extraction of antioxidative anthraquinones from roots of Morinda citrifolia. Sep Purif Technol 54:44–50

    Article  CAS  Google Scholar 

  32. Jiménez MS, Gomez MT, Rodriguez L, Martinez L, Castillo JR (2009) Some pitfallsin PAGE-LA-ICP-MS for quantitative elemental speciation of dissolved organic matter and metallomics. Anal Bioanal Chem 393:699–707

    Article  PubMed  CAS  Google Scholar 

  33. Job D, Haynes PA, Zivy M (2011) Plant proteomics. Proteomics 11(9):1157–1158

    Google Scholar 

  34. Khan MK, Abert-Vian M, Fabiano-Tixier AS, Dangles O, Chemat F (2010) Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem 119:851–858

    Article  CAS  Google Scholar 

  35. Kim HK, Choi YH, Verpoorte R (2010) NMR-based metabolomic analysis of plants. Nat Protoc 5(3):536–549

    Article  CAS  PubMed  Google Scholar 

  36. Kim HK, Verpoorte R (2010) Sample preparation for plant metabolomics. Phytochem Anal 21:4–13

    Article  CAS  PubMed  Google Scholar 

  37. Klein-Júnior LC, Viaene J, Salton J, Koetz M, Gasper AL, Henriques AT, Vander Heyden Y (2016) The use of chemometrics to study multifunctional indole alkaloids from Psychotria nemorosa (Palicourea comb. nov.). Part I: extraction and fractionation optimization based on metabolic profiling. J Chromatogr A 1463:60–70

    Article  PubMed  CAS  Google Scholar 

  38. Konishi H, Ishiguro K, Komatsu SA (2001) Proteomics approach towards understanding blast fungus infection of rice grown under different levels of nitrogen fertilization. Proteomics 1(9):1162–1171

    Article  CAS  PubMed  Google Scholar 

  39. Koyu H, Kazan A, Demir S, Haznedaroglu MZ, Yesil-Celiktas O (2018) Optimization of microwave assisted extraction of Morus nigra L. fruits maximizing tyrosinase inhibitory activity with isolation of bioactive constituents. Food Chem 248:183–191

    Article  CAS  PubMed  Google Scholar 

  40. Krishnan HB, Natarajan SS (2009) A rapid method for depletion of Rubisco from soybean (Glycine max) leaf for proteomic analysis of lower abundance proteins. Phytochemistry 70(17–18):1958–1964

    Article  CAS  PubMed  Google Scholar 

  41. Li S, Strid Å (2005) Anthocyanin accumulation and changes in CHS and PR-5 gene expression in Arabidopsis thaliana after removal of the inflorescence stem (decapitation). Plant Physiol Biochem 43(6):521–525

    Article  CAS  PubMed  Google Scholar 

  42. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438(7070):1040–1044

    Article  CAS  PubMed  Google Scholar 

  43. Lopes Júnior CA, Mazafera P, Arruda MAZ (2014) A comparative ionomic approach focusing on cadmium effects in sunflowers (Helianthus annuus L.). Environ Exp Bot 107:180–186

    Article  CAS  Google Scholar 

  44. Lopes Júnior CA, Barbosa HS, Galazzi RM, Koolen HHF, Gozzo FC, Arruda MAZ (2015) Evaluation of proteome alterations induced by cadmium stress in sunflower (Helianthus annuus L.) cultures. Ecotoxicol Environ Saf 119:170–177

    Article  PubMed  CAS  Google Scholar 

  45. Maciel BCM, Barbosa HS, Pessôa GS, Salazar MM, Pereira GAG, Gonçalves DC, Ramos CHI, Arruda MAZ (2014) Comparative proteomics and metallomics studies in Arabidopsis thaliana leaf tissues: evaluation of the selenium addition in transgenic and nontransgenic plants using two-dimensional difference gel electrophoresis and laser ablation imaging. Proteomics 14:904–914

    Article  CAS  PubMed  Google Scholar 

  46. Arruda MAZ, Magalhães CS, Garcia JS, Lopes AS, Figueiredo EC (2007) Strategies for Sample Preparation Focusing Biomolecules Determination/Characterization. In: Arruda MAZ (Ed.) Trends in Sample Preparation, 1st ed. Nova Science Publishers, New York, pp 245–288

    Google Scholar 

  47. Magalhães CS, Arruda MAZ (2007) Sample preparation for metalloprotein analysis: a case study using horse chestnuts. Talanta 71:1958–1963

    Article  PubMed  CAS  Google Scholar 

  48. Mahmud I, Sternberg S, Williams M, Garrett TJ (2017) Comparison of global metabolite extraction strategies for soybeans using UHPLC-HRMS. Anal Bioanal Chem 409:6173–6180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Molloy MP, Herbert BR, Walsh BJ, Tyler MI, Traini M, Sanchez JC, Hochstrasser DF, Williams KL, Gooley AA (1998) Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis 19(5):837–844

    Article  CAS  PubMed  Google Scholar 

  50. Moratari SR, Saidelles APF, Barin JS, Flores EMM (2004) A simple procedure for decomposition of human hair using polypropylene vials to selenium determination by hydride generation atomic absorption spectrometry. Microchimica Acta 148:157–162

    Article  CAS  Google Scholar 

  51. Moritz T, Johansson A (2007) Plant metabolomics. In: Griffiths W (ed) Metabolomics, metabonomics and metabolite profiling. RSC Publishing, Cambridge, pp 254–272

    Chapter  Google Scholar 

  52. Mounicou S, Szpunar J, Lobinski R (2009) Metallomics: the concept and methodology. Chem Soc Rev 38:1119–1138

    Article  CAS  PubMed  Google Scholar 

  53. Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16(9):373–378

    Article  CAS  PubMed  Google Scholar 

  54. Oniszczuka A, Olech M (2016) Optimization of ultrasound-assisted extraction and LC-ESI–MS/MS analysis of phenolic acids from Brassica oleracea L. var. sabellica. Ind Crop Prod 83:359–363

    Article  CAS  Google Scholar 

  55. Pecsvaradi A, Nagy Z, Varga A, Vashegyi A, Labádi I, Galbács G, Zsoldos F (2009) Chloroplastic glutamine synthetase is activated by direct binding of aluminium. Physiol Plant 135:43–50

    Article  CAS  PubMed  Google Scholar 

  56. Peltier JB, Ytterberg AJ, Sun Q, Wijk KJ (2004) New functions of the thylakoid membrane proteome of Arabidopsis thaliana revealed by a simple, fast, and versatile fractionation strategy. J Biol Chem 279(47):49367–49383

    Article  CAS  PubMed  Google Scholar 

  57. Phizicky E, Bastiaens PIH, Zhu H, Snyder M, Fields S (2003) Protein analysis on a proteomic scale. Nature 422(6928):208–215

    Article  CAS  PubMed  Google Scholar 

  58. Raab A, Ploselli B, Munro C, Thomas-Oates J, Feldmann J (2009) Evaluation of gel electrophoresis conditions for the separation of metal-tagged proteins with subsequent laser ablation ICP-MS detection. Electrophoresis 30:303–314

    Article  CAS  PubMed  Google Scholar 

  59. Rakwal R, Komatsu S (2000) Role of jasmonate in the rice (Oryza sativa L.) self-defense mechanism using proteome analysis. Electrophoresis 21(12):2492–2500

    Article  CAS  PubMed  Google Scholar 

  60. Rep M, Dekker HL, Vossen JH, Boer AD, Houterman PM, Speijer D, Back JW, Koster CG, Cornelissen BJC (2002) Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato. Plant Physiol 130(2):904–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rojano-Delgado AM, Priego-Capote F, De Prado R, Castro MDL (2014) Qualitative/quantitative strategy for the determination of glufosinate and metabolites in plants. Anal Bioanal Chem 406:611–620

    Article  CAS  PubMed  Google Scholar 

  62. Rostagno MA, Palma M, Barroso CG (2003) Ultrasound-assisted extraction of soy isoflavones. J Chromatogr A 1012:119–128

    Article  CAS  PubMed  Google Scholar 

  63. Salem MA, Jüppner J, Bajdzienko K, Giavalisco P (2016) Protocol: a fast, comprehensive and reproducible one-step extraction method for the rapid preparation of polar and semi-polar metabolites, lipids, proteins, starch and cell wall polymers from a single sample. Plant Methods 12(45):1–15

    Google Scholar 

  64. Santoni V, Kieffer S, Desclaux D, Masson F, Rabilloud T (2000) Membrane proteomics: use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties. Electrophoresis 21(16):3329–3344

    Article  CAS  PubMed  Google Scholar 

  65. Sevcenco AM, Pinkse MWH, Bol E, Krijger GC, Wolterbeek HT, Verhaert PDE, Hagedoorn PL, Hagen WR (2009) The tungsten metallome of Pyrococcus furiosus. Metallomics 1:395–402

    Article  CAS  PubMed  Google Scholar 

  66. Sheffield J, Taylor N, Fauquet C, Chen S (2006) The cassava (Manihot esculenta Crantz) root proteome: protein identification and differential expression. Proteomics 6(5):1588–1598

    Article  CAS  PubMed  Google Scholar 

  67. Silva MO, Sussulini A, Arruda MAZ (2010) Metalloproteomics as na interdisciplinary area involving proteins and metals. Expert Rev Proteomics 7(3):387–400

    Article  PubMed  Google Scholar 

  68. Sun Y, Liu D, Chen J, Ye X, Yu D (2011) Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-β-carotene from citrus peels. Ultrason Sonochem 18(1):243–249

    Article  CAS  PubMed  Google Scholar 

  69. Sussulini A, Garcia JS, Mesko MF, Flores EMM, Arruda MAZ (2006) Evaluation of soybean seed protein extraction focusing on metalloprotein analysis. Microchim Acta 158:173–180

    Article  CAS  Google Scholar 

  70. Sussulini A, Garcia JS, Arruda MAZ (2007a) Microwave-assisted decomposition of polyacrylamide gels containing metalloproteins using mini-vials: an auxiliary strategy for metallomics studies. Anal Biochem 361:146–148

    Article  CAS  PubMed  Google Scholar 

  71. Sussulini A, Souza GHMF, Eberlin MN, Arruda MAZ (2007b) Comparative metallomics for transgenic and nontrasngenic soybeans. J Anal At Spectrom 22:1501–1506

    Article  CAS  Google Scholar 

  72. Teo CC, Chong WPK, Ho YS (2013) Development and application of microwave-assisted extraction technique in biological sample preparation for small molecule analysis. Metabolomics 9:1109–1128

    Article  CAS  Google Scholar 

  73. Vieira V, Prieto MA, Barros L, Coutinho JAP, Ferreira O, Ferreira ICFR (2017) Optimization and comparison of maceration and microwave extraction systems for the production of phenolic compounds from Juglans regia L. for the valorization of walnut leaves. Ind Crop Prod 107:341–352

    Article  CAS  Google Scholar 

  74. Villas-Boas SG, Mas S, Åkesson M, Smedsgaard J, Nielsen J (2005) Mass spectrometry in metabolome analysis. Mass Spectrom Rev 24(5):613–646

    Article  CAS  PubMed  Google Scholar 

  75. Wang LJ, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17(6):300–312

    Article  CAS  Google Scholar 

  76. Watson BS, Asirvatham VS, Wang L, Sumner LW (2003) Mapping the proteome of barrel medic (Medicago truncatula). Plant Physiol 131(3):1104–1123

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wei J, Chen J, Liang X, Guo XJ (2016) Microwave-assisted extraction in combination with HPLC-UV for quantitative analysis of six bioactive oxoisoaporphine alkaloids in Menispermum dauricum DC. Biomed Chromatogr 30:241–248

    Article  CAS  PubMed  Google Scholar 

  78. Wu L, Song Y, Hu M, Yu C, Zhang H, Yu A, Ma Q, Wang Z (2015) Ionic-liquid-impregnated resin for the microwave-assisted solid-liquid extraction of triazine herbicides in honey. J Sep Sci 38(17):2953–2959

    Article  CAS  PubMed  Google Scholar 

  79. Xi J, Wang X, Li S, Zhou X, Yue L, Fan J, Hao D (2006) Polyethylene glycol fractionation improved detection of low-abundant proteins by two-dimensional electrophoresis analysis of plant proteome. Phytochemistry 67(21):2341–2348

    Article  CAS  PubMed  Google Scholar 

  80. Yang C, Wang J, Li D (2013) Microextraction techniques for the determination of volatile and semivolatile organic compounds from plants: a review. Anal Chim Acta 799:8–22

    Article  CAS  PubMed  Google Scholar 

  81. Zhang Y, Gao P, Xing Z, Jin S, Chen Z, Liu L, Constantino N, Wang X, Shi W, Yuan JS, Dai SY (2013) Application of an improved proteomics method for abundant protein cleanup: molecular and genomic mechanisms study in plant defense. Mol Cell Proteomics 12(11):3431–3442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang H-F, Yang X-H, Wang Y (2011) Microwave assisted extraction of secondary metabolites from plants: current status and future directions. Trends Food Sci Technol 22:672–688

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Financiadora de Estudos e Projetos (FINEP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Aurélio Zezzi Arruda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Galazzi, R.M., de Jesus, J.R., Arruda, M.A.Z. (2019). Sample Preparation Focusing on Plant Omics. In: Capelo-Martínez, JL. (eds) Emerging Sample Treatments in Proteomics. Advances in Experimental Medicine and Biology(), vol 1073. Springer, Cham. https://doi.org/10.1007/978-3-030-12298-0_7

Download citation

Publish with us

Policies and ethics