Skip to main content

Sample Treatment for Tissue Proteomics in Cancer, Toxicology, and Forensics

  • Chapter
  • First Online:
Emerging Sample Treatments in Proteomics

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1073))

Abstract

Since the birth of proteomics science in the 1990, the number of applications and of sample preparation methods has grown exponentially, making a huge contribution to the knowledge in life science disciplines. Continuous improvements in the sample treatment strategies unlock and reveal the fine details of disease mechanisms, drug potency, and toxicity as well as enable new disciplines to be investigated such as forensic science.

This chapter will cover the most recent developments in sample preparation strategies for tissue proteomics in three areas, namely, cancer, toxicology, and forensics, thus also demonstrating breath of application within the domain of health and well-being, pharmaceuticals, and secure societies.

In particular, in the area of cancer (human tumor biomarkers), the most efficient and multi-informative proteomic strategies will be covered in relation to the subsequent application of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and liquid extraction surface analysis (LESA), due to their ability to provide molecular localization of tumor biomarkers albeit with different spatial resolution.

With respect to toxicology, methodologies applied in toxicoproteomics will be illustrated with examples from its use in two important areas: the study of drug-induced liver injury (DILI) and studies of effects of chemical and environmental insults on skin, i.e., the effects of irritants, sensitizers, and ionizing radiation. Within this chapter, mainly tissue proteomics sample preparation methods for LC-MS/MS analysis will be discussed as (i) the use of LC-MS/MS is majorly represented in the research efforts of the bioanalytical community in this area and (ii) LC-MS/MS still is the gold standard for quantification studies.

Finally, the use of proteomics will also be discussed in forensic science with respect to the information that can be recovered from blood and fingerprint evidence which are commonly encountered at the scene of the crime. The application of proteomic strategies for the analysis of blood and fingerprints is novel and proteomic preparation methods will be reported in relation to the subsequent use of mass spectrometry without any hyphenation. While generally yielding more information, hyphenated methods are often more laborious and time-consuming; since forensic investigations need quick turnaround, without compromising validity of the information, the prospect to develop methods for the application of quick forensic mass spectrometry techniques such as MALDI-MS (in imaging or profiling mode) is of great interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The process of matching a crime scene fingermark to a fingerprint record held in National Databases.

References

  1. Stingl C, Soderquist M, Karlsson O, Boren M, Luider TM (2014) Uncovering effects of ex vivo protease activity during proteomics and peptidomics sample extraction in rat brain tissue by oxygen-18 labeling. J Proteome Res 13:2807–2817

    Article  CAS  PubMed  Google Scholar 

  2. Schober Y, Guenther S, Spengler B, Rompp A (2012) High-resolution matrix-assisted laser desorption/ionization imaging of tryptic peptides from tissue. Rapid Commun Mass Spectrom 26:1141–1146

    Article  CAS  PubMed  Google Scholar 

  3. Cole LM, Djidja MC, Bluff J, Claude E, Carolan VA, Paley M et al (2011) Investigation of protein induction in tumour vascular targeted strategies by MALDI MSI. Methods 54:442–453

    Article  CAS  PubMed  Google Scholar 

  4. Stauber J, MacAleese L, Franck J, Claude E, Snel M, Kaletas BK et al (2010) On-tissue protein identification and imaging by MALDI-ion mobility mass spectrometry. J Am Soc Mass Spectrom 21:338–347

    Article  CAS  PubMed  Google Scholar 

  5. Mao X, He J, Li T, Lu Z, Sun J, Meng Y et al (2016) Application of imaging mass spectrometry for the molecular diagnosis of human breast tumors. Sci Rep 6:201043

    Google Scholar 

  6. Dekker TJ, Balluff BD, Jones EA, Schone CD, Schmitt M, Aubele M et al (2014) Multicenter matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) identifies proteomic differences in breast-cancer-associated stroma. J Proteome Res 13:4730–4738

    Article  CAS  PubMed  Google Scholar 

  7. Pagni F, De Sio G, Garancini M, Scardilli M, Chinello C, Smith AJ et al (2016) Proteomics in thyroid cytopathology: relevance of MALDI-imaging in distinguishing malignant from benign lesions. Proteomics 16:1775–1784

    Article  CAS  PubMed  Google Scholar 

  8. Randall EC, Race AM, Cooper HJ, Bunch J (2016) MALDI imaging of liquid extraction surface analysis sampled tissue. Anal Chem 88:8433–8440

    Article  CAS  PubMed  Google Scholar 

  9. Buck A, Ly A, Balluff B, Sun N, Gorzolka K, Feuchtinger A et al (2015) High-resolution MALDI-FT-ICR MS imaging for the analysis of metabolites from formalin-fixed, paraffin-embedded clinical tissue samples. J Pathol 237:123–132

    Article  CAS  PubMed  Google Scholar 

  10. Casadonte R, Caprioli RM (2011) Proteomic analysis of formalin-fixed paraffin-embedded tissue by MALDI imaging mass spectrometry. Nat Protoc 6:1695–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Magdeldin S, Yamamoto T (2012) Toward deciphering proteomes of formalin-fixed paraffin-embedded (FFPE) tissues. Proteomics 12:1045–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Craven RA, Cairns DA, Zougman A, Harnden P, Selby PJ, Banks RE (2013) Proteomic analysis of formalin-fixed paraffin-embedded renal tissue samples by label-free MS: assessment of overall technical variability and the impact of block age. Proteomics Clin Appl 7:273–282

    Article  CAS  PubMed  Google Scholar 

  13. Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362

    Article  CAS  PubMed  Google Scholar 

  14. Wisniewski JR, Ostasiewicz P, Mann M (2011) High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers. J Proteome Res 10:3040–3049

    Article  CAS  PubMed  Google Scholar 

  15. Djidja MC, Claude E, Scriven P, Allen DW, Carolan VA, Clench MR (2017) Antigen retrieval prior to on-tissue digestion of formalin-fixed paraffin-embedded tumour tissue sections yields oxidation of proline residues. Biochim Biophys Acta 1865:901–906

    Article  CAS  Google Scholar 

  16. Manning JM, Meister A (1966) Conversion of proline to collagen hydroxyproline. Biochemistry 5:1154–1165

    Article  CAS  PubMed  Google Scholar 

  17. Kurahashi T, Miyazaki A, Suwan S, Isobe M (2001) Extensive investigations on oxidized amino acid residues in H(2)O(2)-treated cu, Zn-SOd protein with LC-ESI-Q-TOF-MS, MS/MS for the determination of the copper-binding site. J Am Chem Soc 123:9268–9278

    Article  CAS  PubMed  Google Scholar 

  18. Xu G, Chance MR (2007) Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chem Rev 107:3514–3543

    Article  CAS  PubMed  Google Scholar 

  19. Li-En L, Pin-Rui S, Hsin-Yi W, Cheng-Chih H (2018) A simple sonication improves protein signal in matrix-assisted laser desorption ionization imaging. J Am Soc Mass Spectr:1–4

    Google Scholar 

  20. Hankin JA, Barkley RM, Murphy RC (2007) Sublimation as a method of matrix application for mass spectrometric imaging. J Am Soc Mass Spectrom 18:1646–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang J, Caprioli RM (2011) Matrix sublimation/recrystallization for imaging proteins by mass spectrometry at high spatial resolution. Anal Chem 83:5728–5734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ji JB, Lu XH, Cai MQ, Xu ZC (2006) Improvement of leaching process of Geniposide with ultrasound. Ultrason Sonochem 13:455–462

    Article  CAS  PubMed  Google Scholar 

  23. Djidja MC, Claude E, Snel MF, Francese S, Scriven P, Carolan V et al (2010) Novel molecular tumour classification using MALDI-mass spectrometry imaging of tissue micro-array. Anal Bioanal Chem 39:587–601

    Article  CAS  Google Scholar 

  24. Kriegsmann M, Longuespee R, Wandernoth P, Mohanu C, Lisenko K, Weichert W et al (2017) Typing of colon and lung adenocarcinoma by high throughput imaging mass spectrometry. Biochim Biophys Acta 1865:858–864

    Article  CAS  Google Scholar 

  25. Suk KT, Kim DJ (2012) Drug-induced liver injury: present and future. Clin Mol Hepatol 18:249–257

    Article  PubMed  PubMed Central  Google Scholar 

  26. Robles-Diaz M, Medina-Caliz I, Stephens C, Andrade RJ, Lucena MI (2016) Biomarkers in DILI: one more step forward. Front Pharmacol 7:1–7

    Article  CAS  Google Scholar 

  27. Ramm S, Morissey B, Hernandez B, Rooney C, Pennington SR (2015) Mally, a: application of a discovery to targeted LC-MS proteomics approach to identify deregulated proteins associated with idiosyncratic liver toxicity in a rat model of LPS/diclofenac co-administration. Toxicology 331:100–111

    Article  CAS  PubMed  Google Scholar 

  28. Gao Y, Cao Z, Yang X, Abdelmegeed MA, Sun J, Chen S et al (2017) Proteomic analysis of acetaminophen-induced hepatotoxicity and identification of heme oxygenase 1 as a potential plasma biomarker of liver injury. Proteomics Clin Appl 11:1–2

    Article  CAS  Google Scholar 

  29. Castillo MJ, Reynolds KJ, Gomes A, Fenselau C, Yao X (2001) Quantitative protein analysis using enzymatic [18O]water labeling. Anonymous Current Protocols in Protein Science. John Wiley & Sons, Inc., In

    Google Scholar 

  30. Committee on Toxicity Testing and Assessment of Environmental Agents, Board on Environmental Studies and Toxicology, Institute for Laboratory Animal Research, Division on Earth and Life Studies, National Research Council (2007) Toxicity testing in the 21st century: A vision and a strategy. In: Anonymous Toxicity Testing in the 21st Century: A Vision and a Strategy, pp 1–196

    Google Scholar 

  31. Bruderer R, Bernhardt OM, Gandhi T, Miladinovic SM, Cheng L, Messner S et al (2015) Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics 14:1400–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gonneaud A, Asselin C, Boudreau F, Boisvert F (2017) Phenotypic Analysis of Organoids by Proteomics. Proteomics 17:. n/a

    Google Scholar 

  33. Netzlaff F, Lehr C, Wertz PW, Schaefer UF (2005) The human epidermis models EpiSkin, SkinEthic and EpiDerm: an evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. Eur J Pharm Biopharm 60:167–178

    Article  CAS  PubMed  Google Scholar 

  34. Winget JM, Finley D, Mills KJ, Hugglis T, Bascom C, Isfor RJ et al (2016) Quantitative Proteomic Analysis of Stratum Corneum Dysfunction in Adult Chronic Atopic Dermatitis J Invest Dermatol 136:1732–1735

    CAS  PubMed  Google Scholar 

  35. Konstantakou EG, Velentzas AD, Anagnostopoulos AK, Litou ZI, Konstandi OA, Giannopoulou AF et al (2017) Deep-proteome mapping of WM-266-4 human metastatic melanoma cells: From oncogenic addiction to druggable targets. PLoS One 12:e0171512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Guran R, Vanickova L, Horak V, Krizkova S, Michalek P, Heger Z et al (2017) MALDI MSI of MeLiM melanoma: Searching for differences in protein profiles. PLoS One 12:e0189305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Dowling P, Moran B, McAuley E, Meleady P, Henry M, Clynes M et al (2016) Quantitative label-free mass spectrometry analysis of formalin-fixed, paraffin -embedded tissue representing the invasive cutaneous malignant melanoma proteome. Oncol Lett 12:3296–3304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hoper T, Mussotter F, Haase A, Luch A, Tralau T (2017) Application of proteomics in the elucidation of chemical-mediated allergic contact dermatitis. Toxicol Res 6:595–610

    Article  Google Scholar 

  39. Guedes S, Neves B, Vitorino R, Domingues R, Cruz MT, Domingues P (2017) Contact dermatitis: in pursuit of sensitizer’s molecular targets through proteomics. Arch Toxicol 91:811–825

    Article  CAS  PubMed  Google Scholar 

  40. Ion A, Popa IM, Papagheorghe LML, Lisievici C, Lupu M, Voiculescu V et al (2016) Proteomic approaches to biomarker discovery in cutaneous T-cell lymphoma. Dis Markers 2016:1–8

    Article  CAS  Google Scholar 

  41. Lundberg KC, Fritz Y, Johnston A, Foster AM, Baliwag J, Gudjonsson JE et al (2015) Proteomics of skin proteins in psoriasis: from discovery and verification in a mouse model to confirmation in humans. Molecular & cellular proteomics: MCP 14:109–119

    Article  CAS  Google Scholar 

  42. Reindl J, Pesek J, Krüger T, Wendler S, Nemitz S, Muckova P et al (2016) Proteomic biomarkers for psoriasis and psoriasis arthritis. J Proteome 140:55–61

    Article  CAS  Google Scholar 

  43. Wang J, Suárez-Fariñas M, Estrada Y, Parker ML, Greenlees L, Stephens G et al (2017) Identification of unique proteomic signatures in allergic and non-allergic skin disease. Clin Exp Allergy 47:1456–1467

    Article  CAS  PubMed  Google Scholar 

  44. Cretu D, Liang K, Saraon P, Batruch I, Diamandis E, Chandran V (2015) Quantitative tandem mass-spectrometry of skin tissue reveals putative psoriatic arthritis biomarkers. Clin Proteomics 12:1–8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Fang J, Wang P, Huang C, Chen M, Wu Y, Pan T (2016) Skin aging caused by intrinsic or extrinsic processes characterized with functional proteomics. Proteomics 16:2718–2731

    Article  CAS  PubMed  Google Scholar 

  46. Wang W, Luo J, Sheng W, Xue J, Li M, Ji J et al (2016) Proteomic profiling of radiation-induced skin fibrosis in rats: targeting the ubiquitin-proteasome system. Int J Radiat Oncol Biol Phys 95:751–760

    Article  CAS  PubMed  Google Scholar 

  47. Dyer JM, Haines SR, Thomas A, Wang W, Walls RJ, Clerens S et al (2017) Redox proteomic evaluation of oxidative modification and recovery in a 3D reconstituted human skin tissue model exposed to UVB. Int J Cosmet Sci 39:197–205

    Article  CAS  PubMed  Google Scholar 

  48. Lee SH, Matsushima K, Miyamoto K, Oe T (2016) UV irradiation-induced methionine oxidation in human skin keratins: mass spectrometry-based non-invasive proteomic analysis. J Proteome 133:54–65

    Article  CAS  Google Scholar 

  49. Moon E, Park HM, Lee CH, Do S, Park J, Han N et al (2015) Dihydrolipoyl dehydrogenase as a potential UVB target in skin epidermis; using an integrated approach of label-free quantitative proteomics and targeted metabolite analysis. J Proteome 117:70–85

    Article  CAS  Google Scholar 

  50. Van Eijl S, Zhu Z, Cupitt J, Gierula M, Gotz C, Fritsche E et al (2012) Elucidation of xenobiotic metabolism pathways in human skin and human skin models by proteomic profiling. PLoS ONE:7

    Google Scholar 

  51. Chromy BA, Eldridge A, Forsberg JA, Brown TS, Kirkup BC, Elster E et al (2014) Proteomic sample preparation for blast wound characterization. Proteome Sci 12:1–8

    Article  CAS  Google Scholar 

  52. Kalkhof S, Forster Y, Schmidt J, Schulz MC, Baumann S, Weissflog A et al (2014) Proteomics and metabolomics for in situ monitoring of wound healing. Biomed Res Int 2014:1–12

    Article  CAS  Google Scholar 

  53. Sabino F, Egli FE, Savickas S, Holstein J, Kaspar D, Rollmann M et al (2018) Comparative Degradomics of porcine and human wound exudates unravels biomarker candidates for assessment of wound healing progression in trauma patients. J Invest Dermatol 138:413–422

    Article  CAS  PubMed  Google Scholar 

  54. Taverna D, Pollins AC, Sindona G, Caprioli RM, Nanney LB (2016) Imaging mass spectrometry for accessing molecular changes during burn wound healing. Wound Repair Regen 24:775–785

    Article  PubMed  Google Scholar 

  55. Fadini GP, Menegazzo L, Rigato M, Scattolini V, Poncina N, Bruttocao A et al (2016) NETosis delays diabetic wound healing in mice and humans. Diabetes 65:1061–1071

    Article  CAS  PubMed  Google Scholar 

  56. Broszczak DA, Sydes ER, Wallace D, Parker TJ (2017) Molecular aspects of wound healing and the rise of venous leg ulceration: Omics approaches to enhance knowledge and aid diagnostic discovery. Clin Biochem Rev 38:35–55

    PubMed  PubMed Central  Google Scholar 

  57. Boxman ILA, Hensbergen PJ, Van Der Schors RC, Bruynzeel DP, Tensen CP, Ponec M (2002) Proteomic analysis of skin irritation reveals the induction of HSP27 by sodium lauryl sulphate in human skin. Br J Dermatol 146:777–785

    Article  CAS  PubMed  Google Scholar 

  58. Parkinson, E., Skipp,P., Aleksic, M., Garrow, A., Dadd, T., Hughes, M. et al.: Proteomic analysis of the human skin proteome after In Vivo treatment with sodium dodecyl sulphate. PLoS ONE 9(2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Hart PJ, Francese S, Woodroofe MN, Clench MR (2013) Matrix assisted laser desorption ionisation ion mobility separation mass spectrometry imaging of ex-vivo human skin. Int J Ion Mobil Spectrom 16:71–83

    Article  CAS  Google Scholar 

  60. Koppes SA, Engebretsen KA, Agner T, Angelova-Fischer I, Berents T, Brandner J et al (2017) Current knowledge on biomarkers for contact sensitization and allergic contact dermatitis. Contact Dermatitis 77:1–16

    Article  PubMed  Google Scholar 

  61. Sabino F, Hermes O, Egli FE, Kockmann T, Schlage P, Croizat P et al (2015) In vivo assessment of protease dynamics in cutaneous wound healing by degradomics analysis of porcine wound exudates. Mol Cell Proteomics 14:354–370

    Article  CAS  PubMed  Google Scholar 

  62. Paulo J (2016) Sample preparation for proteomic analysis using a GeLC-MS/MS strategy. J Biol Methods 3:1–16

    Article  Google Scholar 

  63. Test No. 442C: In Chemico Skin Sensitisation -Direct Peptide Reactivity Assay (DPRA), In series:OECD Guidelines for the Testing of Chemicals, Section 4: Health Effects. Published on February 05, 2015 https://dx.doi.org/10.1787/9789264229709-en

  64. Wiese S, Reidegeld KA, Meyer HE, Warscheid B (2007) Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics 7:340–350

    Article  CAS  PubMed  Google Scholar 

  65. Hart PJ, Clench MR (2017) MALDI-MSI of lipids in human skin. Methods Mol Biol 1618:19–36

    Google Scholar 

  66. de Macedo CS, Anderson DM, Schey KL (2017) MALDI (matrix assisted laser desorption ionization) imaging mass spectrometry (IMS) of skin: aspects of sample preparation. Talanta 174:325–335

    Article  PubMed  CAS  Google Scholar 

  67. Enthaler B, Trusch M, Fischer M et al (2013) MALDI imaging in human skin tissue sections: focus on various matrices and enzymes. Anal Bioanal Chem 405:1159–1170

    Article  CAS  PubMed  Google Scholar 

  68. Taverna D, Pollins AC, Sindona G, Caprioli RM, Nanney LB (2015) Imaging mass spectrometry for assessing cutaneous wound healing: analysis of pressure ulcers. J Proteome Res 14:986–996

    Article  CAS  PubMed  Google Scholar 

  69. Schmidt A, Bekeschus S, Wende K, Vollmar B, von Woedtke T (2017) A cold plasma jet accelerates wound healing in a murine model of full-thickness skin wounds. Exp Dermatol 26:156–162

    Article  CAS  PubMed  Google Scholar 

  70. Lewis EE, Freeman-Parry L, Bojar RA, Clench MR (2018) Examination of the wound healing process using a living skin equivalent (LSE) model and matrix-assisted laser desorption-ionization-mass spectrometry imaging (MALDI-MSI). International Journal of Cosmetic Science (In Press)

    Google Scholar 

  71. Ifa DR, Manicke NE, Dill AL, Cooks RG (2008) Latent fingerprint chemical imaging by mass spectrometry. Science 321:805

    Article  CAS  PubMed  Google Scholar 

  72. Rowell F, Hudson K, Seviour J (2009) Detection of drugs and their metabolites in dusted latent fingermarks by mass spectrometry. Analyst 134:701–707

    Article  CAS  PubMed  Google Scholar 

  73. Wolstenholme R, Bradshaw R, Clench MR, Francese S (2009) Study of latent fingermarks by matrix-assisted laser desorption/ionisation mass spectrometry imaging of endogenous lipids. Rapid Commun Mass Spectrom 23:3031–3039

    Article  CAS  PubMed  Google Scholar 

  74. Francese S, Bradshaw R, Denison N (2017) An update on MALDI mass spectrometry based technology for the analysis of fingermarks - stepping into operational deployment. Analyst 142:2518–2546

    Article  CAS  PubMed  Google Scholar 

  75. Bandey H, Bowman V, Bleay S, Downham R, Sears VH (2014) In: Bandey H (ed) Fingermark Visualisation Manual. CAST, Home Office, Sandridge, UK

    Google Scholar 

  76. Ferguson L, Bradshaw R, Wolstenholme R, Clench MR, Francese S (2011) Two-step matrix application for the enhancement and imaging of latent fingermarks. Anal Chem 83:5585–5591

    Article  CAS  PubMed  Google Scholar 

  77. Bailey MJ, Bright NJ, Croxton RS, Francese S, Ferguson LS, Hinder S et al (2012) Chemical characterization of latent fingerprints by matrix-assisted laser desorption ionization, time-of-flight secondary ion mass spectrometry, mega electron volt secondary mass spectrometry, gas chromatography/mass spectrometry, X-ray photoelectron spectroscopy, and attenuated total reflection Fourier transform infrared spectroscopic imaging: an intercomparison. Anal Chem 84:8514–8523

    Article  CAS  PubMed  Google Scholar 

  78. Ferguson LS, Creasey S, Wolstenholme R, Clench MR, Francese S (2013) Efficiency of the dry-wet method for the MALDI-MSI analysis of latent fingermarks. J Mass Spectrom 48:677–684

    Article  CAS  PubMed  Google Scholar 

  79. Yagnik GB, Kortea AR, Lee YJ (2013) Multiplex mass spectrometry imaging for latent fingerprints. J Mass Spectrom 48:100–104

    Article  CAS  PubMed  Google Scholar 

  80. Bailey MJ, Bradshaw R, Francese S, Salter TL, Costa C, Ismail M et al (2015) Rapid detection of cocaine, benzoylecgonine and methylecgonine in fingerprints using surface mass spectrometry. Analyst 140:6254–6259

    Article  CAS  PubMed  Google Scholar 

  81. Bradshaw R, Denison N, Francese S (2017) Implementation of MALDI MS profiling and imaging methods for the analysis of real crime scene fingermarks. Analyst 142:1581–1590

    Article  CAS  PubMed  Google Scholar 

  82. Kaplan-Sandquist K, LeBeau MA, Miller ML (2015) Evaluation of four fingerprint development methods for touch chemistry using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. J Forensic Sci 60:610–618

    Article  CAS  Google Scholar 

  83. Sundar L, Rowell F (2014) Detection of drugs in lifted cyanoacrylate-developed latent fingermarks using two laser desorption/ionisation mass spectrometric methods. Analyst 139:633–642

    Article  CAS  PubMed  Google Scholar 

  84. Bradshaw R, Wolstenholme R, Blackledge R, Clench MR, Ferguson L, Francese S (2011) A novel matrix-assisted laser desorption/ionisation mass spectrometry imaging based methodology for the identification of sexual assault suspects. Rapid Commun Mass Spectrom 25:415–422s

    Article  CAS  PubMed  Google Scholar 

  85. Bradshaw R, Wolstenholme R, Ferguson LS, Sammon C, Mader K, Claude E et al (2013) Spectroscopic imaging based approach for condom identification in condom contaminated fingermarks. Analyst 138:2546–2557

    Article  CAS  PubMed  Google Scholar 

  86. Bradshaw R, Bleay S, Clench MR, Francese S (2017) Direct detection of blood in fingermarks by MALDI MS profiling and imaging. Sci Justice 54:110–117

    Article  Google Scholar 

  87. Patel E, Cicatiello P, Deininger L, Clench MR, Marino G, Giardina P et al (2016) A proteomic approach for the rapid, multi-informative and reliable identification of blood. Analyst 141:191–198

    Article  CAS  PubMed  Google Scholar 

  88. Deininger L, Patel E, Clench MR, Sears V, Sammon C, Francese S (2016) Proteomics goes forensic: detection and mapping of blood signatures in fingermarks. Proteomics 16:1707–1717

    Article  CAS  PubMed  Google Scholar 

  89. Groeneveld G, DePuit M, Bleay S, Bradshaw R, Francese S (2015) Detection and mapping of illicit drugs and their metabolites in fingermarks by MALDI MS and compatibility with forensic techniques. Sci Rep 5:1–13

    Article  CAS  Google Scholar 

  90. Ferguson LS, Wulfert F, Wolstenholme R, Fonville JM, Clench MR, Carolan VA et al (2012) Direct detection of peptides and small proteins in fingermarks and determination of sex by MALDI mass spectrometry profiling. Analyst 137:4686–4692

    Article  CAS  PubMed  Google Scholar 

  91. Flad T, Bogumil R, Tolson J, Schittek B, Garbe C, Deeg M et al (2002) Detection of dermcidin-derived peptides in sweat by ProteinChip technology. J Immunol Methods 270:53–62

    Article  CAS  PubMed  Google Scholar 

  92. Rieg S, Seeber S, Steffen H, Humeny A, Kalbacher H, Stevanovic S et al (2006) Generation of multiple stable dermcidin-derived antimicrobial peptides in sweat of different body sites. J Invest Dermatol 126:354–365

    Article  CAS  PubMed  Google Scholar 

  93. Baechle D, Flad T, Cansier A, Steffen H, Schittek B et al (2006) Cathepsin D is present in human Eccrine sweat and involved in the Postsecretory processing of the antimicrobial peptide DCD-1L. J Biol Chem 281:5406–5415

    Article  CAS  PubMed  Google Scholar 

  94. Wolf R, Voscopoulos C, Winston J, Dharamsi A, Goldsmith P, Gunsior M et al (2009) Highly homologous hS100A15 and hS100A7 proteins are distinctly expressed in normal breast tissue and breast cancer. Cancer Lett 277:101–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Moreira DF, Strauss BE, Vannier E, Belizario JE (2008) Genes up- and down-regulated by dermcidin in breast cancer: a microarray analysis. Genet Mol Res 7:925–932

    Article  CAS  PubMed  Google Scholar 

  96. Stewart GD, Skipworth RJE, Pennington CJ, Lowrie AG, Deans DAC, Edwards DR et al (2008) Variation in dermcidin expression in a range of primary human tumours and in hypoxic/oxidatively stressed human cell lines. Br J Cancer 99:126–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sutton CW, Pemberton KS, Cottrell JS, Corbett JM, Wheeler CH, Dunn MJ et al (1995) Identification of myocardial proteins from two-dimensional gels by peptide mass fingerprinting. Electrophoresis 16:308–316

    Article  CAS  PubMed  Google Scholar 

  98. Chen EI, Cociorva D, Norris JL, Yates JR III (2007) Optimization of mass spectrometry-compatible surfactants for shotgun proteomics. J Proteome Res 6:2529–2538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Djidja MC, Francese S, Loadman PM, Sutton CW, Scriven P, Claude E et al (2009) Detergent addition to tryptic digests and ion mobility separation prior to MS/MS improves peptide yield and protein identification for in situ proteomic investigation of frozen and formalin-fixed paraffin-embedded adenocarcinoma tissue sections. Proteomics 9:2750–2763

    Article  CAS  PubMed  Google Scholar 

  100. Patel E, Clench MR, West A, Marshall S, Marshall N, Francese S (2015) Alternative surfactants for improved efficiency of in situ Tryptic proteolysis of fingermarks. J Am Soc Mass Spectrom 26:862–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Huang HZ, Nichols A, Liu D (2009) Direct identification and quantification of aspartyl succinimide in an IgG2 mAb by RapiGest assisted digestion. Anal Chem 81:1686–1692

    Article  CAS  PubMed  Google Scholar 

  102. Yu YQ, Gilar M, Lee PJ, Bouvier ES, Gebler JC (2003) Enzyme-friendly, mass spectrometry-compatible surfactant for in-solution enzymatic digestion of proteins. Anal Chem 75:6023–6028

    Article  CAS  PubMed  Google Scholar 

  103. Lee HC, Gaensslen RE (2001) Advances in Fingerprint Technology. CRC Press, Boca Raton, pp 63–104

    Google Scholar 

  104. Raiszadeh MM, Ross MM, Russo PS, Schaepper MA, Zhou W, Deng J et al (2012) Proteomic analysis of Eccrine sweat: implications for the discovery of schizophrenia biomarker proteins. J Proteome Res 11:2127–2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bossers LCAM, Roux C, Bell M, McDonagh AM (2011) Methods for the enhancement of fingermarks in blood. Forensic Sci Int 210:1–11

    Article  CAS  PubMed  Google Scholar 

  106. Liumbruno G, D’Alessandro A, Grazzini G, Zolla L (2010) Blood-related proteomics. J Proteome 73:483–507

    Article  CAS  Google Scholar 

  107. Martin NJ, Bunch J, Cooper HJ (2013) Dried blood spot proteomics: surface extraction of endogenous proteins coupled with automated sample preparation and mass spectrometry analysis J. Am Soc Mass Spectrom 24:1242–1249

    Article  CAS  Google Scholar 

  108. Beutler E, Waalen J (2006) The definition of anemia : what is the lower limit of normal of the blood hemoglobin concentration ? Blood 107:1747–1750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Shen Y, Jacobs JM, Camp DG, Fang R, Moore RJ, Smith RD et al (2004) Ultra-high-efficiency strong cation exchange LC/RPLC/MS/MS for high dynamic range characterization of the human plasma proteome. Anal Chem 76:1134–1144

    Article  CAS  PubMed  Google Scholar 

  110. Petibois C, Cazorla G, Cassaigne A, Déléris G (2001) Plasma protein contents determined by Fourier-transform infrared spectrometry. Clin Chem 47:730–738

    CAS  PubMed  Google Scholar 

  111. Bollineni RC, Guldvik IJ, Grönberg H, Wiklund F, Mills IG, Thiede B (2015) A differential protein solubility approach for the depletion of highly abundant proteins in plasma using ammonium sulfate. Analyst 140:8109–8117

    Article  PubMed  Google Scholar 

  112. Kamanna SJ, Voelcker HN, Linacre A, Kirkbride KP (2017) Bottom-up in situ proteomic differentiation of human and non-human haemoglobins for forensic purposes by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry. Rapid Commun Mass Spectrom 31:1927–1937

    Article  CAS  PubMed  Google Scholar 

  113. Longobardi S, Gravagnuolo A, Funari R, Della Ventura B, Pane F, Galano E et al (2015) A simple MALDI plate functionalization by Vmh2 hydrophobin for serial multi-enzymatic protein digestions. Anal Bioanal Chem 407:487–496

    Article  CAS  PubMed  Google Scholar 

  114. De Stefano L, Rea I, De Tommasi E, Rendina I, Rotiroti L, Giocondo M et al (2009) Bioactive modification of silicon surface using self-assembled hydrophobins from Pleurotus ostreatus. Eur Phys J 30:181–185

    Google Scholar 

  115. Longobardi S, Gravagnuolo AM, Rea I, De Stefano L, Marino G, Giardina P (2014) Hydrophobin-coated plates as matrix-assisted laser desorption/ionization sample support for peptide/protein analysis. Anal Biochem 449:9–16

    Article  CAS  PubMed  Google Scholar 

  116. Premasiri WR, Lee JC, Ziegler LD (2012) Surface-enhanced Raman scattering of whole human blood, blood plasma, and red blood cells: cellular processes and bioanalytical sensing. J Phys Chem 116:9376–9386

    Article  CAS  Google Scholar 

  117. Boyd S, Bertino MF, Ye D, White LS, Seashols SJ (2013) Highly sensitive detection of blood by surface enhanced Raman scattering. J Forensic Sci 58:753–756

    Article  CAS  PubMed  Google Scholar 

  118. Sikirzhytski V, Sikirzhytskaya A, Lednev IK (2011) Multidimensional Raman spectroscopic signatures as a tool for forensic identification of body fluid traces: a review. Appl Spectrosc 65:1223–1232

    Article  CAS  PubMed  Google Scholar 

  119. Sikirzhytski V, Sikirzhytskaya A, Lednev IK (2012) Advanced statistical analysis of Raman spectroscopic data for the identification of body fluid traces: semen and blood mixtures. Forensic Sci Int 222:259–265

    Article  CAS  PubMed  Google Scholar 

  120. Virkler K, Lednev IK (2008) Raman spectroscopy offers great potential for the nondestructive confirmatory identification of body fluids. Forensic Sci Int 181:1–5

    Article  Google Scholar 

  121. Sikirzhytski V, Virkler K, Lednev IK (2010) Discriminant analysis of Raman spectra for body fluid identification for forensic purposes. Sensors 10:2869–2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Virkler K, Lednev IK (2010) Raman spectroscopic signature of blood and its potential application to forensic body fluid identification. Anal Bioanal Chem 396:525–534

    Article  CAS  PubMed  Google Scholar 

  123. Li B, Beveridge P, O’Hare WT, Islam M (2014) The application of visible wavelength reflectance hyperspectral imaging for the detection and identification of blood stains. Sci Justice 54:32–38

    Article  Google Scholar 

  124. Deininger L, Francese S, Clench MR, Langenburg G, Sears V, Sammon C (2018) Investigation of infinite focus microscopy for the determination of the association of blood with fingermarks. Sci Justice 58(6):397–404

    Article  CAS  Google Scholar 

  125. Francese S (2019) Criminal profiling through MALDI MS based technologies – breaking barriers towards border free forensic science. Aust J Forensic Sci., https://doi.org/10.1080/00450618.2018.1561949

  126. Ramirez T, Daneshian MH, Bois FY, Clench MR et al (2013) T4 report∗ metabolomics in toxicology and preclinical research. ALTEX 30:209–225

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Francese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cole, L.M., Clench, M.R., Francese, S. (2019). Sample Treatment for Tissue Proteomics in Cancer, Toxicology, and Forensics. In: Capelo-Martínez, JL. (eds) Emerging Sample Treatments in Proteomics. Advances in Experimental Medicine and Biology(), vol 1073. Springer, Cham. https://doi.org/10.1007/978-3-030-12298-0_4

Download citation

Publish with us

Policies and ethics