Skip to main content

MS-Based Proteomic Analysis of Serum and Plasma: Problem of High Abundant Components and Lights and Shadows of Albumin Removal

  • Chapter
  • First Online:
Book cover Emerging Sample Treatments in Proteomics

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1073))

Abstract

Blood serum or plasma proteome is a gold mine of disease biomarkers. However, complexity and a huge dynamic range of their components, combined with multiple mechanisms of degradation and posttranslational modifications, further complicated by the presence of lipids, salts, and other metabolites, represent a real challenge for analytical sensitivity, resolution, and reproducibility. This problem exists particularly in the case of potential disease-specific markers, most typically represented by low-abundant proteins (LAPs), whose detection is usually impaired by the dominance of albumins, immunoglobulins, and other high-abundant serum/plasma proteins (HAPs). Hence, analysis of biomarker candidates in serum/plasma samples frequently requires separation of their components, usually including depletion of albumin in a fraction of interest. Such “preprocessing” of serum/plasma specimens is critical in proteomic analysis based on mass spectrometry. This approach is very potent; nevertheless a wide range of protein concentrations in serum/plasma represents a particular challenge, since high-abundant proteins (mostly albumin) dominate in a sample subjected to mass spectrometry and suppress peptide ions originating from low-abundant proteins, thus limiting probability and reliability of their detection. An emerging approach in serum-/plasma-based biomarker-oriented studies is the proteome component of exosomes – nanovesicles secreted by cells and involved in multiple aspects of intercellular communication. However, the presence of albumin, frequent contaminant of exosomes isolated from human serum/plasma, represents a real challenge also in this type of study. A similar problem is encountered in proteomic studies based on exosomes obtained in in vitro experiments where culture media are normally supplemented with fetal bovine serum containing growth factors and hormones. In this case exosomes are frequently contaminated with bovine serum albumin and other bovine serum proteins which should be removed before proteomic analysis of exosome cargo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gianazza E, Miller I, Palazzolo L, Parravicini C, Eberini I (2016) With or without you - proteomics with or without major plasma/serum proteins. J Proteome 140:62–80. https://doi.org/10.1016/j.jprot.2016.04.002

    Article  CAS  Google Scholar 

  2. Steel LF, Trotter MG, Nakajima PB, Mattu TS, Gonye G, Block T (2003) Efficient and specific removal of albumin from human serum samples. Mol Cell Proteomics 2:262–270. https://doi.org/10.1074/mcp.M300026-MCP200

    Article  CAS  PubMed  Google Scholar 

  3. Georgiou HM, Rice GE, Baker MS (2001) Proteomic analysis of human plasma: failure of centrifugal ultrafiltration to remove albumin and other high molecular weight proteins. Proteomics 1:1503–1506. https://doi.org/10.1002/1615-9861(200111)1:12<1503::AID-PROT1503>3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  4. Yu Z, Kastenmüller G, He Y, Belcredi P, Möller G, Prehn C, Mendes J, Wahl S, Roemisch-Margl W, Ceglarek U, Polonikov A, Dahmen N, Prokisch H, Xie L, Li Y, Wichmann HE, Peters A, Kronenberg F, Suhre K, Adamski J, Illig T, Wang-Sattler R (2011) Differences between human plasma and serum metabolite profiles. PLoS One 6:e21230. https://doi.org/10.1371/journal.pone.0021230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jackson DH, Banks RE (2010) Banking of clinical samples for proteomic biomarker studies: a consideration of logistical issues with a focus on pre-analytical variation. Prot Clin Appl 4:250–270. https://doi.org/10.1002/prca.200900220

    Article  CAS  Google Scholar 

  6. Lobb RJ, Becker M, Wen SW, Wong CS, Wiegmans AP, Leimgruber A, Möller A (2015) Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles 4:27031. https://doi.org/10.3402/jev.v4.27031

    Article  PubMed  Google Scholar 

  7. Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, Simpson RJ (2012) Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56:293–304. https://doi.org/10.1016/j.ymeth.2012.01.002

    Article  CAS  PubMed  Google Scholar 

  8. Van Deun J, Mestdagh P, Sormunen R, Cocquyt V, Vermaelen K, Vandesompele J, Bracke M, De Wever O, Hendrix A (2014) The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles 3:24858. https://doi.org/10.3402/jev.v3.24858

    Article  CAS  Google Scholar 

  9. Kalra H, Adda CG, Liem M, Ang CS, Mechler A, Simpson RJ, Hulett MD, Mathivanan S (2013) Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics 13:3354–3364. https://doi.org/10.1002/pmic.201300282

    Article  CAS  PubMed  Google Scholar 

  10. Lane RE, Korbie D, Anderson W, Vaidyanathan R, Trau M (2015) Analysis of exosome purification methods using a model liposome system and tunable-resistive pulse sensing. Sci Rep 5:7639. https://doi.org/10.1038/srep07639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alvarez ML, Khosroheidari M, Ravi RK, DiStefano JK (2012) Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int 82:1024–1032. https://doi.org/10.1038/ki.2012.256

    Article  CAS  PubMed  Google Scholar 

  12. Finoulst I, Pinkse M, Van Dongen W, Verhaert P (2011) Sample preparation techniques for the untargeted LC-MS-based discovery of peptides in complex biological matrices. J Biomed Biotechnol 2011. https://doi.org/10.1155/2011/245291

    Article  Google Scholar 

  13. Granger J, Siddiqui J, Copeland S, Remick D (2005) Albumin depletion of human plasma also removes low abundance proteins including the cytokines. Proteomics 5:4713–4718. https://doi.org/10.1002/pmic.200401331

    Article  CAS  PubMed  Google Scholar 

  14. Yocum AK, Yu K, Oe T, Blair IA (2005) Effect of immunoaffinity depletion of human serum during proteomic investigations. J Proteome Res 4:1722–1731. https://doi.org/10.1021/pr0501721

    Article  CAS  PubMed  Google Scholar 

  15. Bellei E, Bergamini S, Monari E, Fantoni LI, Cuoghi A, Ozben T, Tomasi A (2011) High-abundance proteins depletion for serum proteomic analysis: concomitant removal of non-targeted proteins. J Amino Acids 40:145–156. https://doi.org/10.1007/s00726-010-0628-x

    Article  CAS  Google Scholar 

  16. Capriotti AL, Caruso G, Cavaliere C, Piovesana S, Samperi R, Laganà A (2012) Comparison of three different enrichment strategies for serum low molecular weight protein identification using shotgun proteomics approach. Anal Chim Acta 740:58–65. https://doi.org/10.1016/j.aca.2012.06.033

    Article  CAS  PubMed  Google Scholar 

  17. Millioni R, Tolin S, Puricelli L, Sbrignadello S, Fadini GP, Tessari P, Arrigoni G (2011) High abundance proteins depletion vs low abundance proteins enrichment: comparison of methods to reduce the plasma proteome complexity. PLoS One 6(5):e19603. https://doi.org/10.1371/journal.pone.0019603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao Y, Chang C, Qin P, Cao Q, Tian F, Jiang J, Li X, Yu W, Zhu Y, He F, Ying W, Qian X (2016) Mining the human plasma proteome with three-dimensional strategies by high-resolution Quadrupole Orbitrap Mass Spectrometry. Anal Chim Acta 904:65–75. https://doi.org/10.1016/j.aca.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  19. Hakimi A, Auluck J, Jones GDD, Ng LL, Jones DJL (2014) Assessment of reproducibility in depletion and enrichment workflows for plasma proteomics using label-free quantitative data-independent LC-MS. Proteomics 14:4–13. https://doi.org/10.1002/pmic.201200563

    Article  CAS  PubMed  Google Scholar 

  20. Seong Y, Yoo YS, Akter H, Kang MJ (2017) Sample preparation for detection of low abundance proteins in human plasma using ultra-high performance liquid chromatography coupled with highly accurate mass spectrometry. J Chromatogr B 1060:272–280. https://doi.org/10.1016/j.jchromb.2017.06.023

    Article  CAS  Google Scholar 

  21. Fernández C, Santos HM, Ruíz-Romero C, Blanco FJ, Capelo-Martínez JL (2011) A comparison of depletion versus equalization for reducing high-abundance proteins in human serum. Electrophoresis 32:2966–2974. https://doi.org/10.1002/elps.201100183

    Article  CAS  PubMed  Google Scholar 

  22. De Bock M, De Seny D, Meuwis MA, Servais AC, Minh TQ, Closset J, Chapelle JP, Louis E, Malaise M, Merville MP, Fillet M (2010) Comparison of three methods for fractionation and enrichment of low molecular weight proteins for SELDI-TOF-MS differential analysis. Talanta 82:245–254. https://doi.org/10.1016/j.talanta.2010.04.029

    Article  CAS  PubMed  Google Scholar 

  23. Liu G, Zhao Y, Angeles A, Hamuro LL, Arnold ME, Shen JX (2014) A novel and cost effective method of removing excess albumin from plasma/serum samples and its impacts on LC-MS/MS bioanalysis of therapeutic proteins. Anal Chem 86:8336–8343. https://doi.org/10.1021/ac501837t

    Article  CAS  PubMed  Google Scholar 

  24. Shi T, Fillmore TL, Gao Y, Zhao R, He J, Schepmoes AA, Nicora CD, Wu C, Chambers JL, Moore RJ, Kagan J, Srivastava S, Liu AY, Rodland KD, Liu T, Camp DG, Smith RD, Qian WJ (2013) Long-gradient separations coupled with selected reaction monitoring for highly sensitive, large scale targeted protein quantification in a single analysis. Anal Chem 85:9196–9203. https://doi.org/10.1021/ac402105s

    Article  CAS  PubMed  Google Scholar 

  25. Domon B, Aebersold R (2010) Options and considerations when selecting a quantitative proteomics strategy. Nat Biotechnol 28. https://doi.org/10.1038/nbt.1661

    Article  CAS  Google Scholar 

  26. Picotti P, Aebersold R (2012) Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 9:555–566. https://doi.org/10.1074/mcp.M111.008235

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR III (2013) Protein analysis by shotgun/bottom-up proteomics. Chem Rev 113:2343–2394. https://doi.org/10.1021/cr3003533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gillette MA, Carr SA (2013) Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nat Methods 10:28–34. https://doi.org/10.1038/nmeth.2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R, Aebersold R (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11:1–17. https://doi.org/10.1074/mcp.O111.016717

    Article  CAS  Google Scholar 

  30. Sajic T, Liu Y, Aebersold R (2015) Using data-independent, high-resolution mass spectrometry in protein biomarker research: perspectives and clinical applications. Proteomics Clin Appl 9:307–321. https://doi.org/10.1002/prca.201400117

    Article  CAS  PubMed  Google Scholar 

  31. Anjo SI, Santa C, Manadas B (2017) SWATH-MS as a tool for biomarker discovery: from basic research to clinical applications. Proteomics 17. https://doi.org/10.1002/pmic.201600278

    Article  Google Scholar 

  32. Liu Y, Buil A, Collins BC, Gillet LC, Blum LC, Cheng LY, Vitek O, Mouritsen J, lachance G, Spector TD, Dermitzakis ET, Aebersold R (2015) Quantitative variability of 342 plasma proteins in a human twin population. Mol Syst Biol 11:786. https://doi.org/10.15252/msb.20145728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu Y, Huettenhain R, Surinova S, Gillet LC, Mouritsen J, Brunner R, Navarro P, Aebersold R (2013) Quantitative measurements of N-linked glycoproteins in human plasma by SWATH-MS. Proteomics 13:1247–1256. https://doi.org/10.1002/pmic.201200417

    Article  CAS  PubMed  Google Scholar 

  34. Sanda M, Goldman R (2016) Data independent analysis of IgG glycoforms in samples of unfractionated human plasma. Anal Chem 88:10118–10125. https://doi.org/10.1021/acs.analchem.6b02554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Polaskova V, Kapur A, Khan A, Molloy MP, Baker MS (2010) High-abundance protein depletion: comparison of methods for human plasma biomarker discovery. Electrophoresis 31:471–482. https://doi.org/10.1002/elps.200900286

    Article  CAS  PubMed  Google Scholar 

  36. Drake RR, Schwegler EE, Malik G, Diaz J, Block T, Mehta A, Semmes OJ (2006) Lectin capture strategies combined with mass spectrometry for the discovery of serum glycoprotein biomarkers. Mol Cell Proteomics 5:1957–1967. https://doi.org/10.1074/mcp.M600176-MCP200

    Article  CAS  PubMed  Google Scholar 

  37. Gundry RL, White MY, Nogee J, Tchernyshyov I, Van Eyk JE (2009) Assessment of albumin removal from an immunoaffinity spin column: critical implications for proteomic examination of the albuminome and albumin-depleted samples. Proteomics 9:2021–2028. https://doi.org/10.1002/pmic.200800686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Govorukhina NI, Keizer-Gunnink A, Van der Zee AGJ, De Jong S, De Bruijn HWA, Bischoff R (2003) Sample preparation of human serum for the analysis of tumor markers: comparison of different approaches for albumin and g-globulin depletion. J Chromatogr A 1009:171–178. https://doi.org/10.1016/S0021-9673(03)00921-X

    Article  CAS  PubMed  Google Scholar 

  39. Zolotarjova N, Martosella J, Nicol G, Bailey J, Boyes BE, Barrett WC (2005) Differences among techniques for high-abundant protein depletion. Proteomics 5:3304–3313. https://doi.org/10.1002/pmic.200402021

    Article  CAS  PubMed  Google Scholar 

  40. Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol:3–22. https://doi.org/10.1002/0471143030.cb0322s30

    Article  Google Scholar 

  41. Ko J, Carpenter E, Issadore D (2016) Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices. Analyst 141:450–460. https://doi.org/10.1039/C5AN01610J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110:13–21. https://doi.org/10.1016/j.ygyno.2008.04.033

    Article  CAS  PubMed  Google Scholar 

  43. Skotland T, Sandvig K, Llorente A (2017) Lipids in exosomes: current knowledge and the way forward. Prog Lipid Res 66:30–41. https://doi.org/10.1016/j.plipres.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  44. Record M, Carayon K, Poirot M, Silvente-Poirot S (2014) Exosomes as new vesicular lipid transporters involved in cell – cell communication and various pathophysiologies. Biochim Biophys Acta 1841:108–120. https://doi.org/10.1016/j.bbalip.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  45. Muller L, Hong CS, Stolz DB, Watkins SC, Whiteside TL (2014) Isolation of biologically-active exosomes from human plasma. J Immunol Methods 411:55–65. https://doi.org/10.1016/j.jim.2014.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Turay D, Khan S, Diaz Osterman CJ, Curtis MP, Khaira B, Neidigh JW, Mirshahidi S, Casiano CA, Wall NR (2016) Proteomic profiling of serum-derived exosomes from ethnically diverse prostate cancer patients. Cancer Investig 34:1–11. https://doi.org/10.3109/07357907.2015.1081921

    Article  CAS  Google Scholar 

  47. Ahmed FE (2009) Sample preparation and fractionation for proteome analysis and cancer biomarker discovery by mass spectrometry. J Sep Sci 32:771–798. https://doi.org/10.1002/jssc.200800622

    Article  CAS  PubMed  Google Scholar 

  48. Zhang L, Wang W, Bai J, Xu YF, Li LQ, Hua L, Deng L, Jia H (2016) Proteomic analysis associated with coronary artery dilatation caused by Kawasaki disease using serum exosomes. Rev Port Cardiol 35:265–273. https://doi.org/10.1016/j.repc.2015.11.016

    Article  PubMed  Google Scholar 

  49. Kowal J, Arras G, Colombo M, Jouve M, Morath PJ, Primdal-Bengtson B, Dingli F, Leow D, Tkach M, Théry C (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci 113:968–977. https://doi.org/10.1073/pnas.1521230113

    Article  CAS  Google Scholar 

  50. Smith MPW, Wood SL, Zougman A, Ho JT, Peng J, Jackson D, Cairns DA, Lewington AJP, Selby PJ, Banks RE (2011) A systematic analysis of the effects of increasing degrees of serum immunodepletion in terms of depth of coverage and other key aspects in top-down and bottom-up proteomic analyses. Proteomics 11:2222–2235. https://doi.org/10.1002/pmic.201100005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dayon L, Kussmann M (2013) Proteomics of human plasma: a critical comparison of analytical workflows in terms of effort, throughput and outcome. EuPA Open Proteom 1:8–16. https://doi.org/10.1016/j.euprot.2013.08.001

    Article  CAS  Google Scholar 

  52. Zhao X, Wu Y, Duan J, Ma Y, Shen Z, Wei L, Cui X, Zhang J, Xie Y, Liu J (2014) Quantitative proteomic analysis of exosome protein content changes induced by hepatitis B virus in Huh-7 cells using SILAC labeling and LC−MS/MS. J Proteome Res 13:5391–5402. https://doi.org/10.1021/pr5008703

    Article  CAS  PubMed  Google Scholar 

  53. An M, Lohse I, Tan Z, Zhu J, Wu J, Kurapati H, Morgan MA, Lawrence TS, Cuneo KC, Lubman DM (2017) Quantitative proteomic analysis of serum exosomes from patients with locally advanced pancreatic cancer undergoing chemoradiotherapy. J Proteome Res 16:1763–1772. https://doi.org/10.1021/acs.jproteome.7b00024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Baranyai T, Herczeg K, Onódi Z, Voszka I, Módos K, Marton N, Nagy G, Mäger I, Wood MJ, El Andaloussi S, Pálinkás Z, Kumar V, Nagy P, Kittel A, Buzas EI, Ferdinandy P, Giricz Z (2015) Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS One 10:e0145686. https://doi.org/10.1371/journal.pone.0145686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Widlak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pietrowska, M., Wlosowicz, A., Gawin, M., Widlak, P. (2019). MS-Based Proteomic Analysis of Serum and Plasma: Problem of High Abundant Components and Lights and Shadows of Albumin Removal. In: Capelo-Martínez, JL. (eds) Emerging Sample Treatments in Proteomics. Advances in Experimental Medicine and Biology(), vol 1073. Springer, Cham. https://doi.org/10.1007/978-3-030-12298-0_3

Download citation

Publish with us

Policies and ethics