Skip to main content

On Multivariate Sampling of a Class of Integral Transforms

  • Chapter
  • First Online:
Topics in Classical and Modern Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 427 Accesses

Abstract

The Fourier transform plays an important role in many applications, including signal and image processing where the Whittaker–Shannon–Kotelnikov sampling theorem provides a pivotal tool in the analog–digital–analog signal conversion. In this article we discuss some generalizations of the Fourier transform and their associated sampling theorems, such as the fractional Fourier transform, the linear canonical transform, and the special affine Fourier transform. The focus is on the extension of their sampling theorems to higher dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Abe, J.T. Sheridan, Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation. Opt. Lett. 19, 1801–1803 (1994)

    Article  Google Scholar 

  2. S. Abe, J.T. Sheridan, Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation an operator approach. J. Phys. A: Math. Gen. 27, 4179–4187 (1994)

    Article  MathSciNet  Google Scholar 

  3. T. Alieva, M. Bastiaans, Properties of the linear canonical integral transformation. J. Opt. Soc. Am. A 24, 3658–3665 (2007)

    Article  Google Scholar 

  4. L.B. Almeida, The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 42(11), 3084–3091 (1994)

    Article  Google Scholar 

  5. A. Bhandari, A. Zayed, Shift-invariant and sampling spaces associated with the special affine Fourier transform. J. Appl. Comput. Harmon. Anal. (to appear)

    Google Scholar 

  6. A. Bhandari, A. Zayed, Shift-invariant and sampling spaces associated with the fractional Fourier transform domain. IEEE Trans. Signal Process. 60, 1627–1637 (2012)

    Article  MathSciNet  Google Scholar 

  7. C. Candan, M.A. Kutay, H.M. Ozakdas, The discrete fractional Fourier transform. IEEE Trans. Signal Process. 48(5), 1329–1337 (2000)

    Article  MathSciNet  Google Scholar 

  8. G. Cariolaro, T. Erseghe, P. Kraniauskas, N. Laurenti, Multiplicity of fractional Fourier transforms and their relationships. IEEE Trans. Signal Process. 48(1), 227–241 (2000)

    Article  MathSciNet  Google Scholar 

  9. T. Erseghe, P. kraniauskas, G. Cariolaro, Unified fractional Fourier transform and sampling theorem. IEEE Trans. Signal Process. 47, 3419–3423 (1999)

    Article  Google Scholar 

  10. I. Gradshteyn, I. Ryzhik, Tables of Integrals, Series, and Products (Academic, New York, 1965)

    Google Scholar 

  11. M.A. Kutay, H.M. Ozakdas, O. Arikan, L. Onural, Optimal filtering in fractional Fourier domains. IEEE Trans. Signal Process. 45, 1129–1143 (1997)

    Article  Google Scholar 

  12. N.N. Lebedev, Special Functions and Their Applications (Dover Publications, New York, 1972)

    MATH  Google Scholar 

  13. A.W. Lohmann, Image rotation, Wigner rotation and the fractional Fourier transform. J. Opt. Soc. Am. A 10, 2181–2186 (1993)

    Google Scholar 

  14. D. Mendlovic, Z. Zalevsky, H.M. Ozakdas, The applications of the fractional Fourier transform to optical pattern recognition, in Optical Pattern Recognition, Ch. 3 (Academic, New York, 1998)

    Google Scholar 

  15. D. Mendlovich, H.M. Ozaktas, Fractional Fourier transforms and their optical implementation 1. J. Opt. Soc. Am. A 10, 1875–1881 (1993)

    Article  Google Scholar 

  16. A. McBride, F. Kerr, On Namias’s fractional Fourier transforms. IMA J. Appl. Math. 39, 159–175 (1987)

    Article  MathSciNet  Google Scholar 

  17. D. Mustard, The fractional Fourier transform and the Wigner distribution. J. Aust. Math. Soc. Appl. Math. 38, 209–219 (1996)

    Article  MathSciNet  Google Scholar 

  18. V. Namias, The fractional order Fourier transforms and its application to quantum mechanics. J. Inst. Math. Appl. 25, 241–265 (1980)

    Article  MathSciNet  Google Scholar 

  19. H.M. Ozakdas, M.A. Kutay, D. Mendlovic, Introduction to the fractional Fourier transform and its applications, in Advances in Imaging Electronics and Physics, Ch. 4 (Academic, New York, 1999)

    Google Scholar 

  20. H. Ozaktas, Z. Zalevsky, M. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, New York, 2001)

    Google Scholar 

  21. R. Paley, N. Wiener, Fourier Transforms in the Complex Domain. American Mathematical Society Colloquium Publications Series, vol. 19 (American Mathematical Society, Providence, 1934)

    Google Scholar 

  22. E. Parzen, A simple proof and some extensions of the sampling theorem, Technical report N. 7, Stanford University, Stanford (1956)

    Google Scholar 

  23. S.-C. Pei, M.-H. Yeh, T.-L.Luo, Fractional Fourier series expansion for finite signal and dual extension to discrete-time fractional Fourier transform. IEEE Trans. Signal Process. 47(10), 2883–2888 (1999)

    Article  MathSciNet  Google Scholar 

  24. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  25. J. Shi, X. Liu, X. Sha, N. Zhang, Sampling and reconstruction of signals in function spaces associated with the linear canonical transform. IEEE Trans. Signal Process. 60, 6041–6047 (2012)

    Article  MathSciNet  Google Scholar 

  26. A. Stern, Sampling of linear canonical transformed signals. Signal Process. 86, 1421–1425 (2006)

    Article  Google Scholar 

  27. R. Tao, B.Z. Li, Y. Wang, G.K. Aggrey, On sampling of band-limited signals associated with the linear canonical transform. IEEE Trans. Signal Process. 56, 5454–5464 (2008)

    Article  MathSciNet  Google Scholar 

  28. K. Wolf, INtegral Transforms in Science and Engineering (Plenum Press, New York, 1979)

    Book  Google Scholar 

  29. M. Zakai, Bandlimited functions and the sampling theorem. Inf. Control 8, 143–158 (1965)

    Article  Google Scholar 

  30. A.I. Zayed, A new perspective on the two-dimensional fractional Fourier transform and its relationship with the Wigner distribution. J. Fourier Anal. Appl. 25(2), 460–487 (2019)

    Article  MathSciNet  Google Scholar 

  31. A.I. Zayed, Advances in Shannon’s Sampling Theory (CRC Press, Boca Raton, 1993)

    MATH  Google Scholar 

  32. A.I. Zayed, On the relationship between the Fourier and fractional Fourier transforms. IEEE Signal Process. Lett. 3, 310–311 (1996)

    Article  Google Scholar 

  33. A.I. Zayed, Convolution and product theorem for the fractional Fourier transform. IEEE Signal Process. Lett. 4, 15–17 (1997)

    Article  Google Scholar 

  34. A.I. Zayed, Fractional Fourier transform of generalized functions. J. Integral Transforms Spec. Funct. 7(4), 299–312 (1998)

    Article  MathSciNet  Google Scholar 

  35. A.I. Zayed, A class of fractional integral transforms: a generalization of the fractional Fourier transform. IEEE Trans. Signal Process. 50, 619–627 (2002)

    Article  MathSciNet  Google Scholar 

  36. A.I. Zayed, Two-dimensional fractional Fourier transform and some of its properties. J. Integral Transforms Spec. Funct. 29, 553–570 (2018)

    Article  MathSciNet  Google Scholar 

  37. A. Zayed, A. Garcia, New sampling formulae for the fractional Fourier transform. Signal Process. 77, 111–114 (1999)

    Article  Google Scholar 

  38. H. Zhao, Q. Ran, J. Ma, L.-Y. Tan, On bandlimited signals associated with linear canonical transform. IEEE Signal Process. Lett. 16, 343–345 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed I. Zayed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zayed, A.I. (2019). On Multivariate Sampling of a Class of Integral Transforms. In: Abell, M., Iacob, E., Stokolos, A., Taylor, S., Tikhonov, S., Zhu, J. (eds) Topics in Classical and Modern Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-12277-5_22

Download citation

Publish with us

Policies and ethics