Skip to main content

External Costs as Indicator for the Environmental Performance of Power Systems

  • Chapter
  • First Online:
Progress in Life Cycle Assessment 2018

Abstract

Power system planning progressively demands integrated assessment methodologies to meet the requirements of environmental sustainability goals. An approach to include environmental impacts into power system decision procedures is the use of external costs. To investigate the applicability of external costs for the environmental assessment of power systems, we integrate external costs into the method of Life Cycle Assessment (LCA) on the case of power generation technologies. The correlation between the LCA results considering external costs on the one hand and on the other hand standard midpoint impact assessment is investigated by regression analysis. We found that eutrophication (marine and terrestrial), acidification, photochemical ozone creation, respiratory effects and climate change show correlation (R2 = 0.97–0.66). In contrast, the categories concerning land and resource use are not correlating. The correlation mainly depends on the elementary flows which are accounted for. External costs lack in including the variety of elementary flows which are considered in the midpoint assessment. An application of external costs as sole impact indicator of power systems is not recommendable at the current state of development and further research activity for the use in LCA is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ReCiPe is also available as endpoint method (derived from the midpoint assessment) but is commonly used on the midpoint level.

  2. 2.

    LIME includes midpoint categories which are derived from the endpoint methodology.

  3. 3.

    Ecosense web tool can be assessed online http://ecoweb.ier.uni-stuttgart.de/EcoSenseLE/current/index.php.

  4. 4.

    Acidification, ecosystem human and ecosystem ionizing radiation, marine and terrestrial eutrophication, ozone depletion potential, photochemical ozone creation, respiratory effects.

  5. 5.

    For land use negative impacts occur and therefore log-transformation is not used. The result is validated with log-transformed data excluding negative values.

  6. 6.

    Full Life Cycle Impact Assessment results for the 22 electricity generation technologies can be found in the Electronic Supplementary Material including the ILCD midpoint impact categories and the external cost implementation (XTCosts).

References

  1. BP (2018) BP Statistical review of world energy 2018, 67th edition, London

    Google Scholar 

  2. Stern DI (1997) Limits to substitution and irreversibility in production and consumption: a neoclassical interpretation of ecological economics. Ecol Econ 21(3):197–215. https://doi.org/10.1016/S0921-8009(96)00103-6

    Article  MathSciNet  Google Scholar 

  3. United Nations (2017) World population prospects: the 2017 revision: volume I: comprehensive tables (ST/ESA/SER.A/399), New York

    Google Scholar 

  4. IPCC (2014) Climate change 2014: mitigation of climate change. contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  5. Umweltbundesamt (2018) National trend tables for the German atmospheric emission reporting 1990—2016 version for the EU-submission 15.01.2018. https://www.umweltbundesamt.de/themen/klima-energie/treibhausgas-emissionen. Accessed 07 Aug 2018

  6. Umweltbundesamt (2018) National trend tables for the German atmospheric emission reporting 1990—2016 Final version 14.02.2018 (v1.0). https://www.umweltbundesamt.de/themen/luft/emissionen-von-luftschadstoffen. Accessed 07 Aug 2018

  7. Rockström J, Steffen W, Noone K et al (2009) A safe operating space for humanity. Nature 461(7263):472. https://doi.org/10.1038/461472a

    Article  Google Scholar 

  8. Steffen W, Richardson K, Rockström J et al. (2015) Sustainability. Planetary boundaries: guiding human development on a changing planet. Science 347(6223):1259855. https://doi.org/10.1126/science.1259855

    Article  Google Scholar 

  9. Wang J-J, Jing Y-Y, Zhang C-F et al (2009) Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew Sustain Energy Rev 13(9):2263–2278. https://doi.org/10.1016/j.rser.2009.06.021

    Article  Google Scholar 

  10. Rauner S, Budzinski M (2017) Holistic energy system modeling combining multi-objective optimization and life cycle assessment. Environ Res Lett 12(12):124005. https://doi.org/10.1088/1748-9326/aa914d

    Article  Google Scholar 

  11. Pauliuk S, Arvesen A, Stadler K et al (2017) Industrial ecology in integrated assessment models. Nat Clim Change 7(1):13–20. https://doi.org/10.1038/nclimate3148

    Article  Google Scholar 

  12. Gagnon L, Bélanger C, Uchiyama Y (2002) Life-cycle assessment of electricity generation options: the status of research in year 2001. Energy Policy 30(14):1267–1278. https://doi.org/10.1016/S0301-4215(02)00088-5

    Article  Google Scholar 

  13. Laurin L, Amor B, Bachmann TM et al (2016) Life cycle assessment capacity roadmap (section 1): decision-making support using LCA. Int J Life Cycle Assess 21(4):443–447. https://doi.org/10.1007/s11367-016-1031-y

    Article  Google Scholar 

  14. European Commission (1995) ExternE: externalities of energy. Series ExternE, vol 1. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  15. Markandya A, Bigano A, Porchia R (2010) The social costs of electricity: scenarios and policy implications. Edward Elgar Publishing, Cheltenham, UK

    Book  Google Scholar 

  16. European Commission (2009) NEEDS New energy externalities developments for sustainability—integrated project: publishable final activity report M1–M54. Sixth Framework Programme

    Google Scholar 

  17. Rabl A, Spadaro J (2005) Final technical report—externalities of energy: extension of accounting framework and policy applications (ExternE-Pol)

    Google Scholar 

  18. Friedrich R, Bachmann T, Nocker L de et al. (2004) NewExt: new elements for the assessment of external costs from energy technologies. Final report contract NENG1-CT2000–00129. EC DG Research

    Google Scholar 

  19. Strantzali E, Aravossis K (2016) Decision making in renewable energy investments: a review. Renew Sustain Energy Rev 55:885–898. https://doi.org/10.1016/j.rser.2015.11.021

    Article  Google Scholar 

  20. Means P, Guggemos A (2015) Framework for life cycle assessment (LCA) based environmental decision making during the conceptual design phase for commercial buildings. Procedia Eng 118:802–812. https://doi.org/10.1016/j.proeng.2015.08.517

    Article  Google Scholar 

  21. Zhang Y, Liang K, Li J et al (2016) LCA as a decision support tool for evaluating cleaner production schemes in iron making industry. Environ Progr Sustain Energy 35(1):195–203. https://doi.org/10.1002/ep.12208

    Article  Google Scholar 

  22. Yilmaz O, Anctil A, Karanfil T (2015) LCA as a decision support tool for evaluation of best available techniques (BATs) for cleaner production of iron casting. J Clean Prod 105:337–347. https://doi.org/10.1016/j.jclepro.2014.02.022

    Article  Google Scholar 

  23. Meyer DE, Upadhyayula VKK (2014) The use of life cycle tools to support decision making for sustainable nanotechnologies. Clean Technol Environ Policy 16(4):757–772. https://doi.org/10.1007/s10098-013-0686-3

    Article  Google Scholar 

  24. Luglietti R, Rosa P, Terzi S et al (2016) Life cycle assessment tool in product development: environmental requirements in decision making process. Procedia CIRP 40:202–208. https://doi.org/10.1016/j.procir.2016.01.103

    Article  Google Scholar 

  25. European Parliament, Council of the European Union (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, vol 5

    Google Scholar 

  26. United States Environmental Protection Agency Renewable Fuel Standard Program (RFS2) Regulatory impact analysis: assessment and standards division, Washington, DC

    Google Scholar 

  27. Deutsches Institut für Normung (2006) DIN EN ISO 14044: Umweltmanagement—Ökobilanz—Anforderungen und Anleitungen (ISO 14044:2006); Deutsche und Englische Fassung EN ISO 14044:2006. Beuth Verlag, Berlin

    Google Scholar 

  28. Deutsches Institut für Normung (2009) DIN EN ISO 14040: Umweltmanagement–Ökobilanz–Grundsätze und Rahmenbedingungen (ISO 14040: 2006); Deutsche und Englische Fassung EN ISO 14040: 2006. Beuth Verlag, Berlin

    Google Scholar 

  29. Bruijn H, Duin R, Huijbregts MAJ et al (eds) (2004) Handbook on life cycle assessment: operational guide to the ISO standards. Eco-efficiency in industry and science, vol 7. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  30. Goedkoop M, Heijungs R, Huijbregts M et al (2013) ReCiPe 2008: a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. First edition (revised)

    Google Scholar 

  31. European Commission (2011) Joint Research Centre. Institute for Environment and Sustainability. Recommendations for life cycle impact assessment in the European context: institute for environment and sustainability: international reference life cycle data system (ILCD) handbook-recommendations for life cycle impact assessment in the European context. Publications Office of the European Union, Luxembourg

    Google Scholar 

  32. Goedkoop MJ, Spriensma R (2000) The eco-indicator 99: a damage oriented method for life cycle impact assessment methodology report. Second edition, Amersfoort

    Google Scholar 

  33. Itsubo N, Inaba A (2005) LIME2, Life-cycle impact assessment method based on endpoint modelling: summary. Japan Environmental Management Association for Industry

    Google Scholar 

  34. Steen B (1999) A systematic approach to environmental priority strategies in product development (EPS): version 2000—General system characteristics, Gothenburg

    Google Scholar 

  35. University of Stuttgart (2018) EcoSense Web2. http://ecosenseweb.ier.uni-stuttgart.de/. Accessed 09 Aug 2018

  36. European Commission (2010) Joint Research Centre. Institute for Environment and Sustainability. International reference life cycle data system (ILCD) handbook—general guide for life cycle assessment—detailed guidance, First edition. Publications Office of the European Union, Luxembourg

    Google Scholar 

  37. European Commission (2012) Joint Research Centre. Institute for Environment and Sustainability. Characterisation factors of the ILCD recommended life cycle impact assessment methods. Database and supporting information. Publications Office of the European Union, Luxembourg

    Google Scholar 

  38. Weidema BP, Bauer C, Hischier R et al (2013) Overview and methodology: data quality guideline for the ecoinvent database version 3: ecoinvent report 1 (v3). The ecoinvent Centre, St. Gallen

    Google Scholar 

  39. Fisher RA (1971) The design of experiments. Hafner Press, New York

    Google Scholar 

  40. Fthenakis V, Kim HC (2009) Land use and electricity generation: a life-cycle analysis. Renew Sustain Energy Rev 13(6–7):1465–1474. https://doi.org/10.1016/j.rser.2008.09.017

    Article  Google Scholar 

  41. de Haes HAU, Heijungs R, Suh S et al (2004) Three strategies to overcome the limitations of life-cycle assessment. J Ind Ecol 8(3):19–32. https://doi.org/10.1162/1088198042442351

    Article  Google Scholar 

  42. Wernet G, Bauer C, Steubing B et al (2016) The ecoinvent database version 3 (part I): overview and methodology. Int J Life Cycle Assess 21(9):1218–1230. https://doi.org/10.1007/s11367-016-1087-8

    Article  Google Scholar 

  43. von Hirschhausen C, Gerbaulet C, Kemfert C et al (2015) German nuclear phase-out enters the next stage: Electricity supply remains secure—Major challenges and high costs for dismantling and final waste disposal. DIW Econ Bull 5(22/23):293–301

    Google Scholar 

  44. Pizzol M, Christensen P, Schmidt J et al (2011) Eco-toxicological impact of “metals” on the aquatic and terrestrial ecosystem: a comparison between eight different methodologies for Life Cycle Impact Assessment (LCIA). J Clean Prod 19(6–7):687–698. https://doi.org/10.1016/j.jclepro.2010.12.008

    Article  Google Scholar 

  45. Nordborg M, Arvidsson R, Finnveden G et al (2017) Updated indicators of Swedish national human toxicity and ecotoxicity footprints using USEtox 2.01. Environ Impact Assess Rev 62:110–114. https://doi.org/10.1016/j.eiar.2016.08.004

    Article  Google Scholar 

  46. Jeon J (2015) The strengths and limitations of the statistical modeling of complex social phenomenon: focusing on SEM, path analysis, or multiple regression models. Int J Econ Manage Eng 9:1634–1642. https://doi.org/10.5281/zenodo.1105869

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Lazar .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6766 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lazar, L., Tietze, I. (2019). External Costs as Indicator for the Environmental Performance of Power Systems. In: Teuteberg, F., Hempel, M., Schebek, L. (eds) Progress in Life Cycle Assessment 2018. Sustainable Production, Life Cycle Engineering and Management. Springer, Cham. https://doi.org/10.1007/978-3-030-12266-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12266-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12265-2

  • Online ISBN: 978-3-030-12266-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics