Skip to main content

Dynamisation of Life Cycle Assessment Through the Integration of Energy System Modelling to Assess Alternative Fuels

  • Chapter
  • First Online:
Progress in Life Cycle Assessment 2018

Abstract

As greenhouse gas (GHG) emissions need to be reduced in order to limit the effects of climate change, Life Cycle Assessment (LCA) provides an internationally recognized framework to evaluate the environmental impact of energy supply and application technologies. However, standard LCA approaches are unable to depict the high dynamics of the future energy system. High shares of renewable energies and more variable loads intensify these dynamics according to a wide range of energy system scenarios. Therefore, a dynamisation and modularisation of the classic LCA approach is proposed in order to easily integrate the simulated electricity generation from energy system models on an hourly basis as well as future energy technologies. A special focus is put on Power-to-X (PtX) technologies in the transport sector due to its potential in deep decarbonisation scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IPCC (2018) Global warming of 1.5 °C. An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In: Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Chen Y, Connors S, Gomis M, Lonnoy E, Matthews JBR, Moufouma-Okia W, Péan C, Pidcock R, Reay N, Tignor M, Waterfield T, Zhou X (eds). In Press

    Google Scholar 

  2. IEA (2018) Key World Energy Statistics 2018. IEA, Paris

    Google Scholar 

  3. BMWi (2018) Energiedaten: Gesamtausgabe. BMWi, Berlin

    Google Scholar 

  4. Wang, Z et al (2017) Outline of principles for building scenarios—transition toward more sustainable energy systems. In: Applied energy, vol 185 Part 2. Elsevier, Amsterdam

    Article  Google Scholar 

  5. Lopion P et al (2018) A review of current challenges and trends in energy systems modeling. In: Renewable and sustainable energy reviews vol. 96. Elsevier, Amsterdam

    Article  Google Scholar 

  6. Finkbeiner M et al (2006) The new international standards for life cycle assessment: ISO 14040 and ISO 14044. In: The international journal of life cycle assessment vol. 11, issue 2. Springer Nature Switzerland AG, Cham

    Google Scholar 

  7. Cherubini F et al (2009) Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. In: Resources, conservation and recycling 53. Elsevier, Amsterdam

    Article  Google Scholar 

  8. Turconi R Boldrin A Astrup T (2013) Life cycle assessment (lca) of electricity generation technologies: overview, comparability and limitations In: Renewable and sustainable energy reviews 28:565–565. Elsevier, Philadelphia

    Google Scholar 

  9. Rauner S et al (2017) Holistic energy system modeling combining multi-objective optimization and life cycle assessment. In: Environmental research letters 12. IOP Publishing, Bristol

    Article  Google Scholar 

  10. Volkart K et al (2018) Integrating life cycle assessment and energy system modelling: methodology and application to the world energy scenarios. In: Sustainable production and consumption 16. Elsevier, Amsterdam

    Article  Google Scholar 

  11. Vandepaer L et al (2018) The integration of energy scenarios into LCA: LCM2017 conference workshop. In: The international journal of life cycle assessment 01/2018. Springer-Verlag GmbH Germany, Berlin

    Google Scholar 

  12. Gebert P et al (2018) Klimapfade für Deutschland. München: The Boston Consulting Group (BCG), Prognos

    Google Scholar 

  13. Bründlinger T et al (2018) dena-Leitstudie Integrierte Energiewende—Impulse für die Gestaltung des Energiesystems bis 2050—Teil A: Ergebnisbericht und Handlungsempfehlungen (dena)—Teil B: Gutachterbericht (ewi Energy Research & Scenarios gGmbH). Deutsche Energie-Agentur GmbH, Berlin

    Google Scholar 

  14. Klimaschutzplan 2050—Klimaschutzpolitische Grundsätze und Ziele der Bundesregierung. Berlin: Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMU), 2016

    Google Scholar 

  15. Foit SR et al (2017) Power-to-syngas: an enabling technology for the transition of the energy system? In: Angewandte Chemie—International Edition vol. 56, issue 20. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  16. Ursúa A et al (2012) Hydrogen production from water electrolysis: current status and future trends. In: Proceedings of the IEEE vo1. 100, issue 2. Piscataway: IEEE—Institute of Electrical and Electronics Engineers Inc

    Google Scholar 

  17. Gamba M et al (2016) Power-to-gas hydrogen: techno-economic assessment of processes towards a multi-purpose energy carrier. Politecnico di Torino, Torino, Italy

    Google Scholar 

  18. Tremel A (2017) Green hydrogen and downstream products—electricity-based fuels for the transportation sector. In: Internationaler Motorenkongress 2017, Proceedings. Springer Fachmedien, Wiesbaden

    Google Scholar 

  19. Dayton DC, Spath PL (2003) Preliminary screening—technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas. National Renewable Energy Laboratory, Golden, Colorado

    Google Scholar 

  20. Fasihi M et al (2017) Synthetic methanol and dimethyl ether production based on hybrid PV-wind power plants. Lappeenranta University of Technology, Lappeenranta (Finland)

    Google Scholar 

  21. Fasihi M et al (2016) Techno-economic assessment of power-to-liquids (PtL) fuels production and global trading based on hybrid PV-wind power plants. Lappeenranta University of Technology, Lappeenranta (Finland)

    Article  Google Scholar 

  22. Götz M, Lefebvre J, Mörs F, Koch AM, Graf F, Bajohr S, Reimert R, Kolb T (2016) Renewable power-to-gas: a technological and economic review. Karlsruhe Karlsruhe Instituts für Technologie 85:1371–1390

    Article  Google Scholar 

  23. Purr K et al (2016) Integration of power to gas/ power to liquids into the ongoing transformation process. German Environment Agency, Dessau-Roßlau

    Google Scholar 

  24. Finkbeiner Ms (2014) The international standards as the constitution of life cycle assessment. In: Klöpffer Walter (ed) Background and future prospects in life cycle assessment. Springer, Netherlands

    Google Scholar 

  25. Menten F et al (2013) A review of LCA greenhouse gas emissions results for advanced biofuels: the use of meta-regression analysis. In: Renewable and sustainable energy reviews, vol. 26. Elsevier, Amsterdam

    Article  Google Scholar 

  26. Regett A, Pellinger C, Eller S (2014) Power2Gas—Hype oder Schlüssel zur Energiewende in: Energiewirtschaftliche Tagesfragen—64. Jg. (2014) Heft 10. etv Energieverlag GmbH, Essen

    Google Scholar 

  27. Uusitalo V et al (2017) Potential for greenhouse gas emission reductions using surplus electricity in hydrogen, methane and methanol production via electrolysis. In: Energy conversion and management, vol 134. Elsevier, Amsterdam

    Article  Google Scholar 

  28. Pellinger C (2016) Mehrwert Funktionaler Energiespeicher aus System- und Akteurssicht—Dissertation an der Fakultät für Elektrotechnik und Informationstechnik an der TU München, durchgeführt an der Forschungsstelle für Energiewirtschaft e.V., München

    Google Scholar 

  29. Heijungs R et al (2002) The computational structure of life cycle assessment. Centre of Environmental Science Leiden University, Leiden

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was performed within the project BEniVer, which is funded by the Federal Ministry of Economic Affairs and Energy on the basis of a resolution of the German Bundestag under the funding reference 03EIV116C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Pichlmaier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pichlmaier, S., Regett, A., Kigle, S. (2019). Dynamisation of Life Cycle Assessment Through the Integration of Energy System Modelling to Assess Alternative Fuels. In: Teuteberg, F., Hempel, M., Schebek, L. (eds) Progress in Life Cycle Assessment 2018. Sustainable Production, Life Cycle Engineering and Management. Springer, Cham. https://doi.org/10.1007/978-3-030-12266-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12266-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12265-2

  • Online ISBN: 978-3-030-12266-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics