Skip to main content

A Survey on the Melnikov Theory for Implicit Ordinary Differential Equations with Applications to RLC Circuits

  • Chapter
  • First Online:
Mathematics Applied to Engineering, Modelling, and Social Issues

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 200))

Abstract

Our recent results are presented on the development of the Melnikov theory in investigation of implicit ordinary differential equations with small amplitude perturbations. In particular, the persistence of orbits connecting singularities in finite time is studied provided that certain Melnikov like conditions hold. Achievements on reversible implicit ordinary differential equations are also considered. Applications are given to nonlinear systems of RLC circuits.

This work was supported by the Slovak Research and Development Agency (grant number APVV- 14-0378) and the Slovak Grant Agency VEGA (grant numbers 2/0153/16 and 1/0078/17).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Awrejcewicz, J., Holicke, M.M.: Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-Type Methods. World Scientific Publishing Co., Singapore (2007)

    Book  Google Scholar 

  2. Battelli, F., Lazzari, C.: Exponential dichotomies, heteroclinic orbits, and Melnikov functions. J. Differ. Equ. 86, 342–366 (1990)

    Article  MathSciNet  Google Scholar 

  3. Battelli, F., Fečkan, M.: Melnikov theory for nonlinear implicit ODEs. J. Differ. Equ. 256, 1157–1190 (2014)

    Google Scholar 

  4. Battelli, F., Fečkan, M.: Melnikov theory for weakly coupled nonlinear RLC circuits. Bound. Value Probl. 2014, 101 (2014)

    Google Scholar 

  5. Battelli, F., Fečkan, M.: Nonlinear RLC circuits and implicit ODEs. Diff. Integr. Equ. 27, 671–690 (2014)

    Google Scholar 

  6. Battelli, F., Fečkan, M.: On the existence of solutions connecting singularities in nonlinear RLC. Nonlinear Anal. 116, 26–36 (2015)

    Google Scholar 

  7. Battelli, F., Fečkan, M.: Blue sky-like catastrophe for reversible nonlinear implicit ODEs. Discrete Contin. Dyn. Syst. Ser. S 9, 895–922 (2016)

    Google Scholar 

  8. Battelli, F., Fečkan, M.: On the existence of solutions connecting IK singularities and impasse points in fully nonlinear RLC circuits. Discrete Contin. Dyn. Syst. Ser. B 22, 3043–3061 (2017)

    Google Scholar 

  9. Boichuk, A.A., Samoilenko, A.M.: Generalized Inverse Operators and Fredholm Boundary Value Problems. VSP, Utrecht-Boston (2004)

    Book  Google Scholar 

  10. Boichuk, A.A., Samoilenko, A.M.: Generalized Inverse Operators and Fredholm Boundary-Value Problems, 2nd edition, Inverse and Ill-Posed Problems Series, vol. 59. De Gruyter, Berlin (2016)

    Book  Google Scholar 

  11. Fečkan, M.: Existence results for implicit differential equations. Math. Slovaca 48, 35–42 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Frigon, M., Kaczynski, T.: Boundary value problems for systems of implicit differential equations. J. Math. Anal. Appl. 179, 317–326 (1993)

    Article  MathSciNet  Google Scholar 

  13. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, Boston (2007)

    MATH  Google Scholar 

  14. Hartman, Ph: Ordinary Differential Equations. Wiley, New York (1964)

    MATH  Google Scholar 

  15. Heikkilä, S., Kumpulainen, M., Seikkala, S.: Uniqueness and comparison results for implicit differential equations. Dyn. Syst. Appl. 7, 237–244 (1998)

    MathSciNet  MATH  Google Scholar 

  16. Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations, Analysis and Numerical Solution. European Math. Soc, Zürich (2006)

    Book  Google Scholar 

  17. Lazarides, N., Eleftheriou, M., Tsironis, G.P.: Discrete breathers in nonlinear magnetic metamaterials. Phys. Rew. Lett. 97, 157406 (2006)

    Article  Google Scholar 

  18. Li, D.: Peano’s theorem for implicit differential equations. J. Math. Anal. Appl. 258, 591–616 (2001)

    Article  MathSciNet  Google Scholar 

  19. Medved’, M.: Normal forms of implicit and observed implicit differential equations. Riv. Mat. Pura ed Appl. 10, 95–107 (1992)

    MathSciNet  MATH  Google Scholar 

  20. Medved’, M.: Qualitative properties of generalized vector fields. Riv. Mat. Pura ed Appl. 15, 7–31 (1994)

    MATH  Google Scholar 

  21. Palmer, K.J.: Exponential dichotomies and transversal homoclinic points. J. Differ Equ. 55, 225–256 (1984)

    Article  MathSciNet  Google Scholar 

  22. Rabier, P.J.: Implicit differential equations near a singular point. J. Math. Anal. Appl. 144, 425–449582 (1989)

    Article  MathSciNet  Google Scholar 

  23. Rabier, P.J., Rheinboldt, W.C.: A general existence and uniqueness theorem for implicit differential algebraic equations. Differ. Integr. Equ. 4, 563–582 (1991)

    MATH  Google Scholar 

  24. Rabier, P.J., Rheinbold, W.C.: A geometric treatment of implicit differential-algebraic equations. J. Differ. Equ. 109, 110–146 (1994)

    Article  MathSciNet  Google Scholar 

  25. Rabier, P.J., Rheinbold, W.C.: On impasse points of quasilinear differential algebraic equations. J. Math. Anal. Appl. 181, 429–454 (1994)

    Article  MathSciNet  Google Scholar 

  26. Rabier, P.J., Rheinbold, W.C.: On the computation of impasse points of quasilinear differential algebraic equations. Math. Comput. 62, 133–154 (1994)

    MathSciNet  Google Scholar 

  27. Riaza, R.: Differential-Algebraic Systems, Analytical Aspects and Circuit Applications. World Scien. Publ. Co., Pte. Ltd., Singapore (2008)

    Book  Google Scholar 

  28. Veldes, G.P., Cuevas, J., Kevrekidis, P.G., Frantzeskakis, D.J.: Quasidiscrete microwave solitons in a split-ring-resonator-based left-handed coplanar waveguide. Phys. Rev. E 83, 046608 (2011)

    Article  Google Scholar 

  29. Vanderbauwhede, A.: Heteroclinic cycles and periodic orbits in reversible systems. In: Wiener, J., Hale, J.K. (eds.) Ordinary and Delay Differential Equations, Pitman Res. Notes Math. Ser., vol. 272, pp. 250–253. Longman Sci. Tech., Harlow (1992)

    Google Scholar 

  30. Vanderbauwhede, A., Fiedler, B.: Homoclinic period blow-up in reversible and conservative systems. Z. Angew. Math. Phys. (ZAMP) 43, 292–318 (1992)

    Article  MathSciNet  Google Scholar 

  31. Wiggins, S.: Chaotic Transport in Dynamical Systems. Springer, New York (1992)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Fečkan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fečkan, M. (2019). A Survey on the Melnikov Theory for Implicit Ordinary Differential Equations with Applications to RLC Circuits. In: Smith, F.T., Dutta, H., Mordeson, J.N. (eds) Mathematics Applied to Engineering, Modelling, and Social Issues. Studies in Systems, Decision and Control, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-030-12232-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12232-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12231-7

  • Online ISBN: 978-3-030-12232-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics