Skip to main content

Optimal Control Measures for Tuberculosis in a Population Affected with Insurgency

  • Chapter
  • First Online:
Mathematics Applied to Engineering, Modelling, and Social Issues

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 200))

Abstract

In this chapter, optimal control theory is applied to a mathematical model describing the population dynamics of tuberculosis (TB) with variability in susceptibility due to difference in awareness level. Seeking to minimize the number of high-risk susceptible individuals with low level of TB awareness and to maximize the number of isolated actively-infected individuals placed under Directly Observed Treatment Short-Course (DOTS), we incorporated time-dependent control functions that represent educational campaign programs in the midst of insurgency, and case finding techniques for chronic TB cases, as they affect the dynamics of TB in a population. A particular case of the TB model without controls is presented and analyzed. Furthermore, the optimal controls are characterized in terms of the optimality systems, which are solved numerically for several scenarios using an iterative method with Runge-Kutta fourth order scheme. Numerical simulations were performed for various setting to illustrate the effect of the controls on the population dynamics of the disease in a given population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agusto, F.B., Adekunle, A.I.: Optimal control of a two-strain tuberculosis-HIV/AIDS co-infection model. BioSystems 119, 20–44 (2014)

    Article  Google Scholar 

  2. Awosusi, A.E.: Aftermath of boko haram violence in the lake chad basin: a neglected global health threat. BMJ Glob. Health. 2(1), e000193 (2017). https://doi.org/10.1136/bmjgh-2016-000193

    Article  Google Scholar 

  3. Borgdorff, M.W.: New measurable indicator for tuberculosis case detection. Emerg. Infect. Dis. 10(9), 1523–1528 (2004)

    Article  Google Scholar 

  4. Bowong, S., Alaoui, A.M.A.: Optimal intervention strategies for tuberculosis. Commun Nonlinear Sci Numer. Simulat 18, 1441–1453 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Checchi, F., Warsame, A., Treacy-Wong, V., et al.: Public health information in crises-affected populations: a review of methods and their use for advocacy and action. The Lancet (2017). https://doi.org/10.1016/S0140-6736(17)30702-X

    Article  Google Scholar 

  6. Cohen, T., Colijn, C., Finklea, B., et al.: Exogenous re-infection and the dynamics of tuberculosis epidemics: local effects in a network model of transmission. J. R. Soc. Interface. 4(14), 523–531 (2007)

    Article  Google Scholar 

  7. Countrymeters, Population of Nigeria, Retrieved on 20th Novermber, 2018 from http://countrymeters.info/en/Nigeria (2018)

  8. Denue, B.A., Gashau, W., Wuduri, Z.W., Stephen, M., et al.: Impact of insurgency on tuberculosis treatment uptake among TB patients in a tertiary health institution in Maiduguri. Northeast. Niger., Niger. Med. Pract. 70(1–2), 11–16 (2016)

    Google Scholar 

  9. Dye, C., Garnett, G.P., Sleeman, K., et al.: Prospects for worldwide tuberculosis control under the WHO DOTS strategy. Directly Obs. Short-Course Ther., Lancet 352(9144), 1886–91 (1998)

    Google Scholar 

  10. Egonmwan, A.O., Okuonghae, D.: Analysis of a mathematical model for tuberculosis with diagnosis. J. Appl. Math. Comput. https://doi.org/10.1007/s12190-018-1172-1

  11. Emmanuelar, I.: Insurgency and humanitarian crises in Northern Nigeria: the case of Boko Haram. Afr. J. Polit. Sci. Int. Relat. 9(7), 284–296 (2015)

    Article  Google Scholar 

  12. Fatmawati, Tasman, H.: An optimal treatment control if TB-HIV coinfection. Int. J. Math. Math. Sci. Article ID 8261208 (1998)

    Google Scholar 

  13. Fister, K.R., Lenhart, S., McNally, J.S.: Optimizing chemotherapy in an HIV model. Electron. J. Diff. Equ. 32, 1–12 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Springer Verlag, New York (1975)

    Book  MATH  Google Scholar 

  15. Jung, E., Lenhart, S., Feng, Z.: Optimal control of treatment in a two-strain tuberculosis model. Discreet Cont Dyn-B 2(4), 473–482 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Kimbrough, W., Saliba, V., Dahab, M., et al.: The burden of tuberculosis in crises-affected populations: a system review. Lancet Infect Dis. 12(12), 950–65 (2012). https://doi.org/10.1016/S1473-3099(12)70225-6

    Article  Google Scholar 

  17. Kirschner, D., Lenhart, S., Serbin, S.: Optimal control of the chemotherapy of HIV. J. Math. Biol. 35, 775–792 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kuznetsov, V.N., Grjibovski, A.M., Mariandyshev, A.O., et al.: Two vicious circles contributing to a diagnostic delay for tuberculosis patients in Arkhangelsk. Emerg. Health Threat. J. 7, (2014) https://doi.org/10.3402/ehtj.v7.24909

  19. Lakshmikantham, V., Leela, S., Martynyuk, A.A.: Stability analysis of nonlinear systems. SIAM Rev. 33(1), 152–154 (1991)

    Article  Google Scholar 

  20. Langer, A., Godefroidt, A., Meuleman, B.: Killing people, dividing a nation? Analyzing student perceptions of the Boko Haram crisis in Nigeria. Studies in Conflict & Terrorism (2016). https://doi.org/10.1080/1057610X.2016.1214434

  21. Lin, Y., Enarson, D.A., Chiang, C.Y., et al.: Patient delay in the diagnosis and treatment of tuberculosis in China: findings of case detection projects. The Union: Public Health Action 5(1), 65–69 (2015)

    Google Scholar 

  22. Loewenberg, S.: Famine fears in northeast Nigeria as Boko Haram fight rages. Lancent: World Report 2017; 389:352 https://doi.org/10.1016/S0140-6736(17)30198-8

  23. Mesfin, M.M., Newell, J.N., Madeley, R.J., et al.: Cost implications of delays to tuberculosis diagnosis among pulmonary tuberculosis patients in Ethiopia. BMC Public Health 10(173) (2010)

    Google Scholar 

  24. MacQueen, G., Santa-Barbara, J.: Peace building through health initiatives. BMJ 321(7256):293–6

    Google Scholar 

  25. Makwakwa, L., Sheu, M.I., Chiang, C.Y., et al.: Patient and health system delays in the diagnosis and treatment of new and retreatment pulmonary tuberculosis cases in Malawi. BMC Infectious Diseases 14(132) (2014)

    Google Scholar 

  26. Moualeu, D.P., Weiser, M., Ehrig, R., et al.: Optimal control for tuberculosis model with undetected cases in Cameroon. Commun Nonlinear Sci Numer. Simulat 20, 986–1003 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Okuonghae, D., Aihie, V.: Case detection and direct observation therapy strategy (DOTS) in nigeria: its effect on TB dynamics. J. Biol. Syst. 16(1), 1–31 (2008)

    MATH  Google Scholar 

  28. Okuonghae, D., Omosigho, S.E.: Determinants of TB case detection in Nigeria: a survey. Global J. Health Sci. 2, 123–28 (2010)

    Google Scholar 

  29. Okuonghae, D., Omosigho, S.E.: Analysis of a mathematical model for tuberculosis: what could be done to increase case detection. J. Theor. Biol. 269(1), 31–45 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Okuonghae, D.: Lyapunov functions and global properties of some tuberculosis models. J. Appl. Math. Comput. (2014). https://doi.org/10.1007/s12190-014-0811-4

    Article  MathSciNet  MATH  Google Scholar 

  31. Okuonghae, D., Ikhimwin, B.O.: Dynamics of a mathematical model for tuberculosis with variability in susceptibility and disease progressions due to difference in awareness level

    Google Scholar 

  32. Osman, A.: Boko haram and the islamic state: a tale of two terrors. Confl. Stud. Q. 18, 20–39 (2017)

    Google Scholar 

  33. Silva, C.J., Torres, D.F.M.: Optimal control for a tuberculosis model with reinfection and post-exposure interventions. Math. Biosci. 2013(244), 154–164 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Silva, C.J., Maurer, H., Torres, D.F.M.: Optimal control for a tuberculosis model with state and control delays. Math. Biosci. Eng. ISSN 1547-1063 (2016)

    Google Scholar 

  35. Smallman-Raynor, M.R., Cliff, A.D.: War Epidemics: A Historical Geography of Infectious Diseases in Military Conflicts and Civil Unrest. Oxford University Press Inc., New York (2004)

    Google Scholar 

  36. Song, B., Castillo-Chavez, C., Aparicio, J.P.: Tuberculosis models with fast and slow dynamics: the role of close and casual contacts. Math Biosci. 180, 187–205 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. TBFacts, TB in Nigeria - Funding, children, diagnosing TB, HIV/TB. Retrieved on 20th Novermber, 2018 from https://www.tbfacts.org/tb-nigeria/ (2018)

  38. Pontryagrin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., et al.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962)

    Google Scholar 

  39. Pullar, N.D., Steinum, H., Bruun, J.N., et al.: HIV patients with latent tuberculosis living in a low-endemic country do not develop active disease during a 2 year follow-up; a Norwegian prospective multicenter study. BMC Infect. Dis. 14, 667 (2014)

    Article  Google Scholar 

  40. Spiegel, P.B., Hering, H., Paik, E., et al.: Conflict-affected displaced persons need to benefit more from HIV and malaria national strategic plans and Global Funds grants. Confl Health 4, 2 (2010)

    Google Scholar 

  41. United Nations Programme on HIV/AIDS (UNAIDS). Communications and Global Advocacy Fact Sheet, UNAIDS (2014)

    Google Scholar 

  42. Uys, P., Brand, H., Warren, R., et al.: The risk of tuberculosis reinfection soon after cure of a first disease episode is extremely high in a hyperendemic community. PLoS ONE 10(12), e0144487 (2015)

    Google Scholar 

  43. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Google Scholar 

  44. Verhagen, L.M., Kapinga, R., van Rosmalen-Nooijens, K.A.W.L.: Factors underlying diagnostic delay in tuberculosis patients in a rural area in Tanzania: a qualitative approach. Clin. Epidemiol. Study: Infect. 38, 433–446 (2010)

    Google Scholar 

  45. Verver, S., Warren, R.M., Beyers, N., et al.: Rate of reinfection tuberculosis after successful treatment is higher than rate of new tuberculosis. Am. J. Respir. Crit. Care. Med. 171(12), 1430–5 (2005)

    Google Scholar 

  46. World Health Organization (WHO): World Report on Violence and Health. Geneva (2002)

    Google Scholar 

  47. World Health Organization (WHO): Global Tuberculosis Report 2014. WHO Report (2014)

    Google Scholar 

  48. World Health Organization (WHO): Global Tuberculosis report 2015. WHO/HTM/TB/2016.22

    Google Scholar 

  49. World Health Organization (WHO): Global Tuberculosis Report 2016. WHO/HTM/TB/2016.13

    Google Scholar 

  50. World Health Organization (WHO): Global Tuberculosis Report 2017, WHO/HTM/TB/2017.23

    Google Scholar 

  51. World Health Organization (WHO): Global Tuberculosis Report 2018. WHO/CDS/TB/2018.25

    Google Scholar 

  52. Yang, W.T., Gounder, C.R., Akande, T., et al.: Barriers and Delays in Tuberculosis Diagnosis and Treatment Services: Does Gender Matter? Tuberc. Res. Treat. (2014). https://doi.org/10.1155/2014/461935

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Okuonghae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Egonmwan, A.O., Okuonghae, D. (2019). Optimal Control Measures for Tuberculosis in a Population Affected with Insurgency. In: Smith, F.T., Dutta, H., Mordeson, J.N. (eds) Mathematics Applied to Engineering, Modelling, and Social Issues. Studies in Systems, Decision and Control, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-030-12232-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12232-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12231-7

  • Online ISBN: 978-3-030-12232-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics