Skip to main content

Hierarchical Hardware/Software Algorithm for Multi-view Object Reconstruction by 3D Point Clouds Matching

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics – Theory and Applications (VISIGRAPP 2017)

Abstract

The Matching or Registration of 3D point clouds is a problem that arises in a variety of research areas with applications ranging from heritage reconstruction to quality control of precision parts in industrial settings. The central problem in this research area is that of receiving two point clouds, usually representing different parts of the same object and finding the best possible rigid alignment between them. Noise in data, a varying degree of overlap and different data acquisition devices make this a complex problem with a high computational cost. This issue is sometimes addressed by adding hardware to the scanning system, but this hardware is frequently expensive and bulky. We present an algorithm that makes use of cheap, widely available (smartphone) sensors to obtain extra information during data acquisition. This information then allows for fast software registration. The first such hybrid hardware-software approach was presented in [31]. In this paper we improve the performance of this algorithm by using hierarchical techniques. Experimental results using real data show how the algorithm presented greatly improves the computation time of the previous algorithm and compares favorably to state of the art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Holding \(d(a_i,b_j)=d(\mu (a_i),\mu (b_j)) \forall a_i,b_j \in \mathbb {R}^3\), d() being the euclidean distance.

References

  1. https://www.cs.umd.edu/~mount/ann/

  2. Agarwal, P.K., Har-Peled, S., Sharir, M., Wang, Y.: Hausdorff distance under translation for points and balls. In Proceedings of the Nineteenth Annual Symposium on Computational Geometry, SCG 2003, pp. 282–291. ACM, New York (2003)

    Google Scholar 

  3. Aiger, D., Mitra, N.J., Cohen-Or, D.: 4-points congruent sets for robust pairwise surface registration. In: SIGGRAPH, vol. 27, no. 3, p. 85 (2008)

    Google Scholar 

  4. Andreadis, A., Gregor, R., Sipiran, I., Mavridis, P., Papaioannou, G., Schreck, T.: Fractured 3D object restoration and completion. In: ACM SIGGRAPH 2015 Posters, p. 74. ACM (2015)

    Google Scholar 

  5. Arya, S., Mount, D.M.: Approximate nearest neighbor queries in fixed dimensions. In: SODA, vol. 93, pp. 271–280 (1993)

    Google Scholar 

  6. Bærentzen, J.A., Gravesen, J., Anton, F., Aanæs, H.: 3D surface registration via iterative closest point (ICP). In: Guide to Computational Geometry Processing, pp. 263–275. Springer, London (2012). https://doi.org/10.1007/978-1-4471-4075-7_15

    Chapter  Google Scholar 

  7. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  8. Buchin, K., Diez, Y., van Diggelen, T., Meulemans, W.: Efficient trajectory queries under the Fréchet distance (GIS Cup). In: Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, SIGSPATIAL 2017, pp. 101:1–101:4. ACM, New York (2017)

    Google Scholar 

  9. Choi, S., Kim, S., Chae, J.: Real-time 3D registration using GPU. Mach. Vis. Appl. 22, 837–850 (2011)

    Article  Google Scholar 

  10. Choi, S., Zhou, Q.-Y., Koltun, V.: Robust reconstruction of indoor scenes. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 5556–5565. IEEE (2015)

    Google Scholar 

  11. da Silva Tavares, J.M.R.: Image processing and analysis: applications and trends. In: 2010 Fifth International Conference on AES-ATEMA# 8217 (2010)

    Google Scholar 

  12. Diez, Y., Lopez, M.A., Sellarès, J.A.: Noisy road network matching. In: Cova, T.J., Miller, H.J., Beard, K., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2008. LNCS, vol. 5266, pp. 38–54. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87473-7_3

    Chapter  Google Scholar 

  13. Díez, Y., Martí, J., Salvi, J.: Hierarchical normal space sampling to speed up point cloud coarse matching. Pattern Recogn. Lett. 33, 2127–2133 (2012)

    Article  Google Scholar 

  14. Díez, Y., Roure, F., Lladó, X., Salvi, J.: A qualitative review on 3D coarse registration methods. ACM Comput. Surv. (CSUR) 47(3), 45 (2015)

    Article  Google Scholar 

  15. Diez, Y., Sellarès, J.A.: Noisy colored point set matching. Discrete Appl. Math. 159(6), 433–449 (2011)

    Article  MathSciNet  Google Scholar 

  16. Elbaz, G., Avraham, T., Fischer, A.: 3D point cloud registration for localization using a deep neural network auto-encoder. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 2472–2481 (2017)

    Google Scholar 

  17. Fan, J., et al.: Convex hull indexed Gaussian mixture model (CH-GMM) for 3D point set registration. Pattern Recogn. 59, 126–141 (2016)

    Article  Google Scholar 

  18. Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global registration. In: Eurographics Symposium on Geometry Processing, pp. 197–206 (2005)

    Google Scholar 

  19. Jerbić, B., Šuligoj, F., Švaco, M., Šekoranja, B.: Robot assisted 3D point cloud object registration. Proc. Eng. 100, 847–852 (2015). 25th DAAAM International Symposium on Intelligent Manufacturing and Automation (2014)

    Article  Google Scholar 

  20. Larkins, R.L., Cree, M.J., Dorrington, A.A.: Verification of multi-view point-cloud registration for spherical harmonic cross-correl. In: 27th Conference on Image Vision Computing, New Zealand, pp. 358–363. ACM (2012)

    Google Scholar 

  21. Lian, Z., et al.: A comparison of methods for non-rigid 3D shape retrieval. Pattern Recogn. (2012)

    Google Scholar 

  22. Makadia, A., Patterson, A., Daniilidis, K.: Fully automatic registration of 3D point clouds. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 1297–1304 (2006)

    Google Scholar 

  23. Manay, S., Hong, B.-W., Yezzi, A.J., Soatto, S.: Integral invariant signatures. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 87–99. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_8

    Chapter  Google Scholar 

  24. Martins, A., Bessant, M., Manukyan, L., Milinkovitch, M.: R2OBBIE-3D, a fast robotic high-resolution system for quantitative phenotyping of surface geometry and colour-texture. PLoS One 10(6), 1–18 (2015)

    Google Scholar 

  25. Matabosch, C., Fofi, D., Salvi, J., Batlle, E.: Registration of surfaces minimizing error propagation for a one-shot multi-slit hand-held scanner. Pattern Recogn. 41(6), 2055–2067 (2008)

    Article  Google Scholar 

  26. Mellado, N., Aiger, D., Mitra, N.J.: Super 4PCS fast global pointcloud registration via smart indexing. In: Computer Graphics Forum, vol. 33, no. 5, pp. 205–215. Wiley Online Library (2014)

    Google Scholar 

  27. Mian, A., Bennamoun, M., Owens, R.: On the repeatability and quality of keypoints for local feature-based 3D object retrieval from cluttered scenes. Int. J. Comput. Vis. 89(2), 348–361 (2010)

    Article  Google Scholar 

  28. Oliveira, F.P., Tavares, J.M.R.: Medical image registration: a review. Comput. Methods Biomech. Biomed. Eng. 17(2), 73–93 (2014). PMID: 22435355

    Article  Google Scholar 

  29. Pottmann, H., Wallner, J., Huang, Q.-X., Yang, Y.-L.: Integral invariants for robust geometry processing. Comput. Aided Geom. Des. 26(1), 37–60 (2009)

    Article  MathSciNet  Google Scholar 

  30. Pribanić, T., Diez, Y., Fernandez, S., Salvi, J.: An efficient method for surface registration. In: VISAPP, no. 1, pp. 500–503 (2013)

    Google Scholar 

  31. Pribanić, T., Diez, Y., Roure, F., Salvi, J.: An efficient surface registration using smartphone. Mach. Vis. Appl. 27(4), 559–576 (2016)

    Article  Google Scholar 

  32. Pribanić, T., Mrvoš, S., Salvi, J.: Efficient multiple phase shift patterns for dense 3D acquisition in structured light scanning. Image Vis. Comput. 28(8), 1255–1266 (2010)

    Article  Google Scholar 

  33. ProjectTango: Project tango (2016). https://www.google.com/atap/projecttango/#project. Accessed 20 Sept 2016

  34. Roure, F., Díez, Y., Lladó, X., Forest, J., Pribanic, T., Salvi, J.: An experimental benchmark for point set coarse registration. In: International Conference on Computer Vision Theory and Applications (2015)

    Google Scholar 

  35. Roure, F., Diez, Y., Lladó, X., Forest, J., Pribanic, T., Salvi, J.: A study on the robustness of shape descriptors to common scanning artifacts. In: 14th International Conference on Machine Vision Applications, MVA, pp. 522–525. IEEE (2015)

    Google Scholar 

  36. Roure, F., Llad, X., Salvi, J., Pribanić, T., Diez, Y.: Hierarchical techniques to improve hybrid point cloud registration. In: Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, VISIGRAPP 2017, pp. 44–51. INSTICC, SciTePress (2017)

    Google Scholar 

  37. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: IEEE International Conference on 3D Digital Imaging and Modeling, pp. 145–152 (2001)

    Google Scholar 

  38. Salti, S., Tombari, F., Stefano, L.D.: A performance evaluation of 3D keypoint detectors. In: IEEE International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, pp. 236–243 (2011)

    Google Scholar 

  39. Salvi, J., Matabosch, C., Fofi, D., Forest, J.: A review of recent range image registration methods with accuracy evaluation. Image Vis. Comput. 25(5), 578–596 (2007)

    Article  Google Scholar 

  40. Sipiran, I., Bustos, B.: Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes. Vis. Comput. 27(11), 963–976 (2011)

    Article  Google Scholar 

  41. StructureSensor: Structure sensor (2016). http://structure.io/. Accessed 20 Sept 2016

  42. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Computer Graphics Forum, vol. 28, pp. 1383–1392 (2009)

    Article  Google Scholar 

  43. Tonioni, A., Salti, S., Tombari, F., Spezialetti, R., Stefano, L.D.: Learning to detect good 3D keypoints. Int. J. Comput. Vis. 126(1), 1–20 (2018)

    Article  Google Scholar 

  44. Yang, J., Li, K., Li, K., Lai, Y.-K.: Sparse non-rigid registration of 3D shapes. In: Computer Graphics Forum, vol. 34, pp. 89–99. Wiley Online Library (2015)

    Google Scholar 

  45. Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface feature detection and description with applications to mesh matching. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 373–380 (2009)

    Google Scholar 

  46. Zhang, J., Sun, J.: Instance-based object recognition in 3D point clouds using discriminative shape primitives. Mach. Vis. Appl. 29(2), 285–297 (2018)

    Article  MathSciNet  Google Scholar 

  47. Zou, Y., Wang, X., Zhang, T., Liang, B., Song, J., Liu, H.: BRoPH: an efficient and compact binary descriptor for 3D point clouds. Pattern Recogn. 76, 522–536 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

We want to thank the authors of the state of the art algorithms considered for making their code publicly available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yago Diez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roure, F., Lladó, X., Salvi, J., Privanić, T., Diez, Y. (2019). Hierarchical Hardware/Software Algorithm for Multi-view Object Reconstruction by 3D Point Clouds Matching. In: Cláudio, A., et al. Computer Vision, Imaging and Computer Graphics – Theory and Applications. VISIGRAPP 2017. Communications in Computer and Information Science, vol 983. Springer, Cham. https://doi.org/10.1007/978-3-030-12209-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12209-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12208-9

  • Online ISBN: 978-3-030-12209-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics