Skip to main content

Applying Data Assimilation on the Urban Environment

  • Conference paper
  • First Online:
Computational and Information Technologies in Science, Engineering and Education (CITech 2018)

Abstract

The safety on the urban environment is the most urgent problem of the modern world. A promising avenue for solving this problem is the development of effective monitoring systems, whose mathematical support is based on the application of numerical algorithms for modeling the spread of a pollutant, that evaluate the state of the system in real time [1, 2]. In data assimilation tasks, it is required to predict the value of the model state function in accordance with available observational data, that is, to estimate the “real” state of the system using a mathematical model, a priori information and measurement data. The variational principle of constructing numerical schemes is used in this paper [1, 3]. Numerical experiments were carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Penenko, V.V.: Methods of numerical modeling of atmospheric processes. Hydrometeopub (1981)

    Google Scholar 

  2. Penenko, V.V., Aloyan, A.E.: Models and methods for environmental problems. Novosibirsk, Science, Siberian (1985)

    Google Scholar 

  3. Penenko, V.V.: Variational methods of data assimilation and inverse problems for studying the atmosphere, ocean, and environment. Numer. Anal. Appl. 2(4), 341–351 (2009)

    Article  MATH  Google Scholar 

  4. Sasaki, I.: An objective analysis based on variational method. J. Meteorol. Soc. Japan 36, 29–30 (1958)

    Article  Google Scholar 

  5. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. AME. J. Basic Eng. 82, 34–35 (1960)

    Google Scholar 

  6. Kalman, R.E., Bucy, R.S.: New results in linear filtering and prediction theory. Trans. AME Ser. D. J. Basic Eng. 83, 95–107 (1961)

    Article  MathSciNet  Google Scholar 

  7. Klimova, E.G.: Adaptive algorithm of suboptimal Kalman filter. Research Activities in Atmospheric and Ocean Modeling, Report, pp. 0117–0118 (2004)

    Google Scholar 

  8. Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Academic Press, New York (1970)

    MATH  Google Scholar 

  9. Menard, R., Cohn, S.E., Chang, L.-P., Lyster, P.M.: Assimilation of stratospheric chemical tracer observations using a Kalman filter. Part 1: formulation. Mon. Wea. Rev. 128, 2654–2671 (2000)

    Article  Google Scholar 

  10. Dee, D.P.: Simplification of the Kalman filter for meteorological data assimilation. Q. J. R. Meteorol. Soc. 117, 365–384 (1991)

    Article  Google Scholar 

  11. Evensen, G., Leeuwen, P.J.: Assimilation of Geosat altimeter data for the Agulhas current using the ensemble Kalman filter with a quasigeostrophic model. Mon. Wea. Rev. 124, 85–96 (1996)

    Article  Google Scholar 

  12. Heemink, A.W., Verlaan, M., Segers, A.J.: Variance reduced ensemble Kalman filtering. Mon. Wea. Rev. 129, 1718–1728 (2001)

    Article  Google Scholar 

  13. Miyoshi, T., Sato, Y.: Assimilating satellite radiances with a local ensemble transform Kalman filter (LETKF) applied to the JMA global model (GSM). SOLA 135, 37–40 (2007)

    Article  Google Scholar 

  14. Miyoshi, T., Yamane, S.: Local ensemble transform Kalman filter with an AGCM at a T159/L48 resolution. Mon. Wea. Rev. 135, 3841–3861 (2007)

    Article  Google Scholar 

  15. Takemasa, M., Yoshiaki, S., Takashi, K.: Ensemble Kalman filter and 4D-Var intercomparison with the Japanese operational global analysis and prediction system. Mon. Wea. Rev. 138(7), 2846–2866 (2010)

    Article  Google Scholar 

  16. Whitaker, J.S., Hamill, T.M., Wei, X., Song, Y., Toth, Z.: Ensemble data assimilation with the NCEP global forecast system. Mon. Wea. Rev. 136, 463–482 (2008)

    Article  Google Scholar 

  17. Kalnay, E., Park, S.K., Pu, Z., Gao, J.: Application of quasi-inverse method to data assimilation. Mon. Wea. Rev. 128, 864–875 (2008)

    Article  Google Scholar 

  18. Rabier, F.: Extended assimilation and forecast experiments with a four-dimensional variational assimilation system. Q. J. R. Meteorol. Soc. 124, 1861–1887 (1998)

    Article  Google Scholar 

  19. Mitchel, H.L., Houtekamer, P.L.: An adaptive ensemble Kalman filter. Mon. Wea. Rev. 128, 413–433 (2000)

    Article  Google Scholar 

  20. Daescu, D., Carmichael, G.: An adjoint sensitivity method for the adaptive location of the observations in air quality modeling. J. Atmos. Sci. 60, 434–449 (2003)

    Article  Google Scholar 

  21. Trevisan, A., Uboldi, F.: Assimilation of standard and targeted observations within the unstable subspace of the observation-analysis-forecast cycle system. J. Atmos. Sci. 65, 103–113 (2004)

    Article  Google Scholar 

  22. Palatella, L., Carrassi, A., Trevisan, A.: Lyapunov vectors and assimilation in the unstable subspace: theory and applications. J. Phys. A: Math. Theor. 46, 254020 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Penenko, V.V., Obraztsov, N.N.: Variational method of matching fields of meteorological elements. Meteorol. Hydrol. 11, 3–16 (1976)

    Google Scholar 

  24. Le Dimet, F., Talagrand, O.: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus 38A, 97–110 (1986)

    Article  Google Scholar 

  25. Bocquet, M., et al.: Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models. Atmos. Chem. Phys. Discuss. 14, 32233–32323 (2014)

    Article  Google Scholar 

  26. Marchuk, G.I.: Basic and conjugate equations of atmospheric and ocean dynamics. Meteorol. Hydrol. 2, 17–34 (1974)

    Google Scholar 

  27. Penenko, V.V.: Computational aspects of modeling the dynamics of atmospheric processes and evaluating the influence of various factors on the dynamics of the atmosphere. Some Problems of Computational and Applied Mathematics, Novosibirsk, Science, pp. 61–76 (1975)

    Google Scholar 

  28. Penenko, V.V.: Variational data assimilation in real time. Comput. Technol. 10(8), 9–20 (2005)

    MATH  Google Scholar 

  29. Penenko, V.V.: Forecasting changes in atmospheric quality with estimation of uncertainties from monitoring data. Opt. Atmos. Ocean. 21, 492–497 (2008)

    Google Scholar 

  30. Penenko, V., Tsvetova, E.: Orthogonal decomposition methods for inclusion of climatic data into environmental studies. Ecol. Modell. 217, 279–291 (2008)

    Article  Google Scholar 

  31. Penenko, A.V., Penenko, V.V., Tsvetova, E.A.: Consistent algorithms for data assimilation in atmospheric quality monitoring models based on the variational principle with weak constraints. Sib. J. Comput. Math. 19, 401–418 (2016)

    MATH  Google Scholar 

  32. Penenko, V.V., Tsvetova, E.A.: Mathematical models of environmental prediction. Appl. Mech. Tech. Phys. 48, 428–436 (2007)

    Article  MATH  Google Scholar 

  33. Pianova, E.A., Faleychik, L.M.: Information-computing equipment for scenarios for assessing the dynamics and quality of the atmosphere. Comput. Technol. 17, 109–119 (2012)

    Google Scholar 

  34. Rakhmetullina, S.Zh., Denisova, N.F., Bitimbayev, I.T.: Application of variational algorithms in the system of ecological monitoring. In: III International Scientific-Practical Conference on Informatization of Society: Mother (2012)

    Google Scholar 

  35. Temirbekov, N.M., Madiyarov, M.N., Abdoldina, F.N., Malgazharov, E.A., Temirbekov, A.N.: Mathematical models and information technologies of the atmospheric boundary layer (2011)

    Google Scholar 

  36. Madiyarov, M.N.: Geoinformation system for modeling the process of air pollution in the industrial city of the city. Sci. Tech. J. Bull. Eng. Acad. Repub. Kazakhstan 3(25), 18–23 (2007)

    Google Scholar 

  37. Soltan, G.Zh.: Informational and analytical system for decision support in the ecological monitoring of a water body. Vestnik of D. Serikbaev EKSTU 1, 118–122 (2008)

    Google Scholar 

  38. Belginova, S.A., Rakhmetullina, S.Zh., Turganbaev, E.M.: Development of technology for assimilation of environmental monitoring data based on the variational algorithm. In: Materials of the 9th International Asian School-Seminar “Problems of Optimization of Complex Systems”, 15–25 August (2013)

    Google Scholar 

  39. Bouttier, F., Courtier, P.: Data assimilation concepts and methods. Meteorological Training Course Lecture Series, ECMWF (2002)

    Google Scholar 

  40. Elbern, H., Strunk, A., Schmidt, H., Talagrand, O.: Emission rate and chemical state estimation by 4-dimensional variational inversion. Atmos. Chem. Phys. 7, 3749–3769 (2007)

    Article  Google Scholar 

  41. Penenko, V.V.: Numerical schemes for advective-diffusion equations using local problems. Rotaprint of Computing Center SB RAS, Novosibirsk (1990)

    Google Scholar 

  42. Penenko, V., Tsvetova, E., Penenko, A.: Variational approach and Euler’s integrating factors for environmental studies. Comput. Math. Appl. 67, 2240–2256 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Penenko, A.V., Kussainova, A.T.: Development of an algorithm for data assimilation for of the model convection-diffusion of an impurity in the atmosphere based on a nonstationary two-layer discrete-analytic numerical scheme. Vestnik of D. Serikbaev EKSTU 2, 84–91 (2013). ISSN 1561-4212

    Google Scholar 

  44. Penenko, A.V.: Some theoretical and applied questions of sequential variational assimilation of data. Comput. Tech. 11, 35–40 (2006)

    MATH  Google Scholar 

  45. Penenko, A., Mukatova, Z.S., Penenko, V.V., Gochakov, A., Antokhin, P.N.: Numerical study of the direct variational algorithm of data assimilation in urban conditions. Atmos. Ocean Opt. 31, 456–462 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. T. Khassenova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khassenova, Z.T., Kussainova, A.T. (2019). Applying Data Assimilation on the Urban Environment. In: Shokin, Y., Shaimardanov, Z. (eds) Computational and Information Technologies in Science, Engineering and Education. CITech 2018. Communications in Computer and Information Science, vol 998. Springer, Cham. https://doi.org/10.1007/978-3-030-12203-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12203-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12202-7

  • Online ISBN: 978-3-030-12203-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics