Skip to main content

Cyanobacteria and Toxic Blooms in the Great Mazurian Lakes System: Biodiversity and Toxicity

  • Chapter
  • First Online:
Book cover Polish River Basins and Lakes – Part II

Abstract

The Great Mazurian Lakes System (GMLS), located in the northeastern part of Poland, is an extremely valuable area in terms of natural environment value, tourism, and local economy. The system is divided into two parts – the northern meso-eutrophic and the southern eutrophic. GMLS are lakes with very high taxonomic diversity of phytoplankton, and cyanobacteria are very often predominant in the species composition and biomass. The presence of cyanobacteria belonging to 14 different families from the orders of Nostocales, Oscillatoriales, Synechococcales, and Chroococcales was recorded throughout the system. The GMLS has undergone significant changes over the recent decades which affected the taxonomic composition and dominant species of cyanobacteria. Particularly the southern part was subject to significant changes, from rapid eutrophication in the 1970s and 1980s, resulting in massive blooms of cyanobacteria, to a significant improvement in water quality in the 1990s and a reduction of cyanobacteria biomass. However, cyanobacteria are the dominant component of phytoplankton up to the present, although there are no dense blooms in recent years. Many of the cyanobacteria taxa in the GMLS can potentially produce toxins. Hepatotoxic microcystins are the most common cyanotoxins in freshwater, and in GMLS they sometimes reached significant concentrations in water. Studies have shown that the main producers of microcystins in GMLS are genera Microcystis and Planktothrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brock TD (1973) Evolutionary and ecological aspects of the cyanophytes. The biology of the blue green algae. Blackwell Scientific Publications, Oxford, pp 487–500

    Google Scholar 

  2. Schopf JW (1996) Cyanobacteria. Pioneers of the early earth. Contributions in phycology, Berlin, pp 13–32

    Google Scholar 

  3. Fay P (1965) Heterotrophy and nitrogen fixation in Chlorogloea fritschii. J Gen Microbiol 39:11–20

    CAS  Google Scholar 

  4. Douglas SE (1994) Chloroplast origins and evolution. The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 91–118

    Google Scholar 

  5. Castenholz RW (1973) Ecology of blue-green algae in hot springs. The biology of blue-green algae. Blackwell Scientific Publications, Oxford, pp 379–414

    Google Scholar 

  6. Kol E (1968) Kryobiologie. I. Kryovegetation. Die Binnengewässer, Band XXIV, E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, p 216

    Google Scholar 

  7. Laamanen M (1996) Cyanoprokaryotes in the Baltic Sea ice and winter plankton. Arch Hydrobiol Suppl 117. Algol Stud 83:423–433

    Google Scholar 

  8. Chorus I (1999) Bartram toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E&FN Spon, London

    Google Scholar 

  9. Kardinaal WEA, Visser PM (2005) Dynamics of cyanobacterial toxins: sources of variability in microcystin concentrations. In: Huisman JH, Matthijs CP, Visser P (eds) Harmful cyanobacteria. Springer, Dordrecht, pp 41–63

    Google Scholar 

  10. Walsby AE (1978) The gas vesicles of aquatic prokaryotes. In: Relations between structure and functioning in the prokaryotic cell, 28th symposium of the society for general microbiology. Cambridge University Press, Cambridge, p 338

    Google Scholar 

  11. Paerl HW, Huisman J (2008) Climate. Blooms like it hot. Science 320:57–58

    CAS  Google Scholar 

  12. Schreurs H (1992) Cyanobacterial dominance, relation to eutrophication and lake morphology. PhD thesis, University of Amsterdam, Amsterdam

    Google Scholar 

  13. Gliwicz ZM, Lampert W (1990) Food thresholds in Daphnia species in the absence and presence of blue-green filaments. Ecology 71:691–702

    Google Scholar 

  14. DeMott WR, Gulati RD, van Donk E (2001) Daphnia food limitation in three hypereutrophic Dutch lakes: evidence for exclusion of large-bodied species by interfering filaments of cyanobacteria. Limnol Oceanogr 46:2054–2060

    Google Scholar 

  15. Huisman J, Hulot FD Population dynamics of harmful Cyanobacteria. Factors affecting species composition. In: Huisman JH, CP Matthijs, P Visser (eds), Harmful cyanobacteria, 143–176. Springer, Dordrecht 2005

    Google Scholar 

  16. Reynolds CS, Wiseman SW, Clarke MJO (1984) Growth- and loss-rate responses of phytoplankton to intermittent artificial mixing and their potential application to the control of planktonic algal biomass. J Appl Ecol 21:11–39

    Google Scholar 

  17. Dokulil MT, Teubner K (2000) Cyanobacterial dominance in lakes. Hydrobiologia 438:1–12

    CAS  Google Scholar 

  18. Pizzolon L, Tracanna B, Prósperi C, Guerrero JM (1999) Cyanobacterial blooms in Argentinean inland waters. Lakes Reserv Res Manage 4:101–105

    Google Scholar 

  19. Robarts RD, Zohary T (1987) Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria. N Z J Mar Freshw Res 21:391–399

    CAS  Google Scholar 

  20. Wiedner C, Rücker J, Brüggemann R, Nixdorf B (2007) Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia 152:473–484

    Google Scholar 

  21. Kokociński M, Meriluoto J, Spoof L, Gągała I, Jurczak T, Rejmonczyk E, Mankiewicz-Boczek J (2011) Distribution and potential producers of cylindrospermopsin in western Poland. Eur J Phycol 46:130–131

    Google Scholar 

  22. Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (2008) Climate change and water. Technical paper of the intergovernmental panel on climate change, IPCC Secretariat, Geneva, p 210

    Google Scholar 

  23. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 1535 pp. https://doi.org/10.1017/CBO9781107415324

  24. Paerl HW, Huisman J (2009) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep 1:27–37

    CAS  Google Scholar 

  25. Metcalf JS, Codd GA (2004) Cyanobacterial toxins in the water environment. Foundation for Water Research

    Google Scholar 

  26. Sivonen K, Börner T (2008) Bioactive compounds produced by cyanobacteria. The Cyanobacteria: molecular biology, genomics and evolution. Caister Academic Press, Norfolk

    Google Scholar 

  27. Jasser I, Callieri C (2017) Picocyanobacteria: the smallest cell-size cyanobacteria. Handbook of cyanobacterial monitoring and cyanotoxin analysis. Wiley, Chichester

    Google Scholar 

  28. Siuda W (2008) Fosfor, azot i węgiel a ewolucja statusu troficznego Wielkich Jezior Mazurskich. Ochrona i Rekultywacja Wód Wielkich Jezior Mazurskich Narzędziem Rozwoju Naukowego, Gospodarczego, Społecznego i Kulturowego Regionu. Wydawnictwo Instytutu Rybactwa Śródlądowego, Olsztyn, pp 110–115. [In Polish]

    Google Scholar 

  29. Mikulski Z (1966) Bilans wodny Wielkich Jezior Mazurskich. Państwowy Instytutu Hydrologiczno-Metorologiczny, Warszawa. [In Polish]

    Google Scholar 

  30. Bajkiewicz-Grabowska E (2008) Obieg wody w systemie Wielkich Jezior Mazurskich. Ochrona i Rekultywacja Wód Wielkich Jezior Mazurskich Narzędziem Rozwoju Naukowego, Gospodarczego, Społecznego i Kulturowego Regionu. Wydawnictwo Instytutu Rybactwa Śródlądowego, Olsztyn. [In Polish]

    Google Scholar 

  31. Bukowska A, Bielczynska A, Karnkowska-Ishikawa A, Chrost RJ, Jasser I (2014) Molecular (PCR-DGGE) versus morphological approach: analysis of taxonomic composition of potentially toxic cyanobacteria in freshwater lakes. Aquat Biosyst 10:2–11

    Google Scholar 

  32. Napiórkowska-Krzebietke A (2015) Cyanobacterial bloom intensity in the ecologically relevant state of lakes – an approach to Water Framework Directive implementation. Oceanol Hydrobiol Stud 44:97–108

    Google Scholar 

  33. Chróst RJ (1975) Inhibitors produced by algae as an ecological factor affecting bacteria in water ecosystem. I. Dependence between phytoplankton and bacteria development. A Microbiol Pol 7:125–133

    Google Scholar 

  34. Spodniewska I (1978) Phytoplankton as the indicator of lake eutrophication. I. Summer situation in 34 Masurian lakes in 1973. Ekol Pol 26:53–70

    CAS  Google Scholar 

  35. Spodniewska I (1979) Phytoplankton as the indicator of lake eutrophication. II. Summer situation in 25 Masurian lakes in 1976. Ekol Pol 27:481–496

    Google Scholar 

  36. Napiórkowska-Krzebietke A, Hutorowicz A (2005) Long-term changes of phytoplankton in Lake Mamry Północne. Oceanol Hydrobiol Stud 34:217–228

    Google Scholar 

  37. Mankiewicz J, Komárková J, Izydorczyk K, Jurczak T, Tarczynska M, Zalewski M (2005) Hepatotoxic cyanobacterial blooms in the lakes of northern Poland. Environ Toxicol 20:499–506

    CAS  Google Scholar 

  38. Napiórkowska-Krzebietke A, Hutorowicz A (2006) Long-term changes of phytoplankton in Lake Niegocin, in the Masurian Lake region, Poland. Oceanol Hydrobiol Stud 35:209–226

    Google Scholar 

  39. Napiórkowska-Krzebietke A, Hutorowicz A (2007) Long-term changes in the biomass and composition of phytoplankton in a shallow, flow-through lake Kirsajty (Masurian Lakeland, Poland). Pol J Nat Sci 22:512–524

    Google Scholar 

  40. Jasser I, Karnkowska-Ishikawa A, Kozłowska E, Królicka A, Łukomska-Kowalczyk M (2010) Composition of picocyanobacteria community in the Great Mazurian Lakes: isolation of phycoerythrin-rich and phycocyanin-rich ecotypes from the system – comparison of two methods. Pol J Microbiol 59:21–31

    CAS  Google Scholar 

  41. Jakubowska N, Zagajewski P, Gołdyn R (2013) Water blooms and cyanobacterial toxins in lakes. Pol J Environ Stud 22:1077–1082

    CAS  Google Scholar 

  42. Bukowska A, Kaliński T, Koper M, Kostrzewska-Szlakowska I, Kwiatowski J, Mazur-Marzec H, Jasser I (2017) Predicting blooms of toxic cyanobacteria in eutrophic lakes with diverse cyanobacterial communities. Sci Rep 7:8342

    Google Scholar 

  43. Siuda W, Kauppinen ES, Kaliński T, Chróst RJ, Kiersztyn B (2017) The relationship between primary production and respiration in the photic zone of the Great Mazurian Lakes (GMLS), in relation to trophic conditions, plankton composition and other ecological factors. Pol J Ecol 65:303–323

    Google Scholar 

  44. Komárek J, Kaštovský J, Mareš J, Johansen JR (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86:295–335

    Google Scholar 

  45. Kauppinen ES (2013) Trophic state of the Great Masurian Lakes system in the past, present and future – causes mechanisms and effects of changes. PhD thesis, Faculty of Biology, University of Warsaw, Warszawa

    Google Scholar 

  46. Hillbricht-Ilkowska A, Spodniewska I (1969) Comparison of the primary production of phytoplankton in three lakes of different trophic type. Ekol Pol 17:241–261

    Google Scholar 

  47. Spodniewska I (1986) Planktonic blue-green algae of lakes in north-eastern Poland. Ekol Pol 34:151–183

    Google Scholar 

  48. Chróst RJ, Siuda W (2006) Microbial production, utilization, and enzymatic degradation of organic matter in the upper trophogenic water layer in the pelagial zone of lakes along the eutrophication gradient. Limnol Oceanogr 51:749–762

    Google Scholar 

  49. Krzywosz W (1993) Long-term changes in the composition and biomass of the phytoplankton in lake Niegocin (Great Masurian Lakes, Poland). Arch Ryb Pol 1:187–203

    Google Scholar 

  50. Tarczyńska M, Mankiewicz-Boczek J (2005) Risk of microcystins occurrence in water, guidelines of WHO. Ecohydrol Hydrobiol 5:7. [In Polish]

    Google Scholar 

  51. Maršálek B, Bláha L, Babica P (2003) Analyses of microcystins in the biomass of Pseudanabaena limnetica collected in Znojmo reservoir. Czech Phycol 3:195–197

    Google Scholar 

  52. Carmichael WW, Li R (2006) Cyanobacteria toxins in the Salton Sea. Saline Syst 2:5

    Google Scholar 

  53. Humpage A (2008) Toxin types, toxicokinetics and toxicodynamics. Cyanobacterial harmful algal blooms: state of the science and research needs. Springer Science, New York

    Google Scholar 

  54. Furtado ALFF, Calijuri MD, Lorenzi AS, Honda RY, Genuario DB, Fiore MF (2009) Morphological and molecular characterization of cyanobacteria from a Brazilian facultative wastewater stabilization pond and evaluation of microcystin production. Hydrobiologia 627:195–209

    CAS  Google Scholar 

  55. Santos MCR, Muelle H, Pacheco DMD (2012) Cyanobacteria and microcystins in lake Furnas (S. Miguel Island-Azores). Limnetica 3:107–118

    Google Scholar 

  56. Boopathi T, Ki J-S (2014) Impact of environmental factors on the regulation of cyanotoxin production. Toxins 6:1951–1978

    Google Scholar 

  57. Kokocinski M, Gągała I, Jasser I, Karosiene J, Kasperoviciene J, Kobos J, Koreiviene J, Soininen J, Szczurowska A, Woszczyk M, Mankiewicz-Boczek J (2017) Distribution of invasive Cylindrospermopsis raciborskii in the East-Central Europe is driven by climatic and local environmental variables. FEMS Microbiol Ecol 93:fix035

    Google Scholar 

  58. Kurmayer R, Christiansen G (2009) The genetic basis of toxin production in cyanobacteria. Fr Rev 2:31–50

    Google Scholar 

  59. Rücker J, Stüken A, Nixdorf B, Fastner J, Chorus I, Wiedner C (2007) Concentrations of particulate and dissolved cylindrospermopsin in 21 Aphanizomenon-dominated temperate lakes. Toxicon 50:800–809

    Google Scholar 

  60. Ballot A, Fastner J, Wiedner C (2010) Paralytic shellfish poisoning toxin-producing cyanobacterium Aphanizomenon gracile in Northeast Germany. Appl Environ Microbol 76:1173

    CAS  Google Scholar 

Download references

Acknowledgments

These studies were financially supported by the National Science Centre, Poland, grant PRELUDIUM 2013/11/N/NZ8/00629 and grant OPUS 2015/17/B/NZ9/01552 awarded to AB and RJC, respectively. Field studies were performed in the Research Station in Mikołajki, Nencki Institute of Experimental Biology of Polish Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard J. Chróst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bukowska, A., Kaliński, T., Chróst, R.J. (2020). Cyanobacteria and Toxic Blooms in the Great Mazurian Lakes System: Biodiversity and Toxicity. In: Korzeniewska, E., Harnisz, M. (eds) Polish River Basins and Lakes – Part II. The Handbook of Environmental Chemistry, vol 87. Springer, Cham. https://doi.org/10.1007/978-3-030-12139-6_7

Download citation

Publish with us

Policies and ethics