Skip to main content

Verification of Mathematical Model for Bioimpedance Diagnostics of the Blood Flow in Cerebral Vessels

  • Conference paper
  • First Online:
Advances in Artificial Systems for Medicine and Education II (AIMEE2018 2018)

Abstract

The electrical impedance method is considered as an evaluation of cerebral blood circulation. An electrode construction has been developed for recording the pulse blood filling of main large arteries of the brain: internal carotid artery, anterior cerebral artery, middle cerebral artery and ophthalmic artery. The electrical scheme for the replacement of cerebral vessels is verified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Audebert, H., Fiebach, J.: Brain imaging in acute ischemic stroke—MRI or CT. Curr. Neurol. Neurosci. Rep. 15(3) (2015). https://doi.org/10.1007/s11910-015-0526-4

  2. Nageswara Reddy, P., Mohan Rao, C.P.V.N.J., Satyanarayana, C.: Optimal segmentation framework for detection of brain anomalies. Int. J. Eng. Manuf. (IJEM) 6(6), 26–37 (2016). https://doi.org/10.5815/ijem.2016.06.03

  3. Neela, R., Kalaimagal, R.: BRAINSEG—Brain structures segmentation pipeline using open source tools. Int. J. Math. Sci. Comput. (IJMSC) 1(1), 1–10 (2015). https://doi.org/10.5815/ijmsc.2015.01.01

  4. Kristensen, T., Hovind, P., Iversen, H., Andersen, U.: Screening with doppler ultrasound for carotid artery stenosis in patients with stroke or transient ischaemic attack. Clin. Physiol. Funct. Imaging (2017). https://doi.org/10.1111/cpf.12456

  5. Gupta, N., Shukla, A.P., Agarwal, S.: Despeckling of medical ultrasound images: a technical review. Int. J. Inf. Eng. Electron. Bus. (IJIEEB) 8(3), 11–19 (2016). https://doi.org/10.5815/ijieeb.2016.03.02

  6. Pagán, R., Parikh, P., Mergo, P., Gerber, T., Mankad, R., Freeman, W., Shapiro, B.: Emerging role of cardiovascular CT and MRI in the evaluation of stroke. Am. J. Roentgenol. 204(2), 269–280 (2015). https://doi.org/10.2214/ajr.14.13051

    Article  Google Scholar 

  7. Naess, H., Tatlisumak, T., Kõrv, J.: Stroke in the Young. Stroke Res. Treat. 2011, 1–2 (2011). https://doi.org/10.4061/2011/271979

    Article  Google Scholar 

  8. Scholz, F., Weiler, N.: Electrical impedance tomography and its perspectives in intensive care medicine. Intensiv. Care Med. 437–447 (2006). https://doi.org/10.1007/0-387-35096-9_40

  9. Adler, A., Gaburro, R., Lionheart, W.: Electrical impedance tomography. In: Handbook of Mathematical Methods in Imaging. Springer (2016)

    Google Scholar 

  10. Holder, D.: Electrical Impedance Tomography. Institute of Physics Publication, Bristol (2005)

    Google Scholar 

  11. Polydorides, L., Borsic, A.: The reconstruction problem. In: Electric Impedance Tomography: Methods, History and Applications. IOP Publishing, England (2004)

    Google Scholar 

  12. Reinius, H., Borges, J.B., Fredén, F., et al.: Real-time ventilation and perfusion distributions by electrical impedance tomography during one-lung ventilation with cannothorax. Acta Med. Scan 59, 354–368 (2015). https://doi.org/10.1111/aas.12455

    Article  Google Scholar 

  13. Luzhnov, P.V., Dyachenko, A.I., Semenov, Y.S.: Research of impedance characteristics with a negative pressure breathing using rheocardiographic and rheoencephalographic signals. IFMBE Proc. 68(2), 937–940 (2018). https://doi.org/10.1007/978-981-10-9038-7_173

    Article  Google Scholar 

  14. Luzhnov, P.V., Shamaev, D.M., Iomdina, E.N., et al.: Using quantitative parameters of ocular blood filling with transpalpebral rheoophthalmography. IFMBE Proc. 65, 37–40 (2017). https://doi.org/10.1007/978-981-10-5122-7_10

    Article  Google Scholar 

  15. Shamaev, D.M., Luzhnov, P.V., Iomdina, E.N.: Modeling of ocular and eyelid pulse blood filling in diagnosing using transpalpebral rheoophthalmography. IFMBE Proc. 65, 1000–1003 (2017). https://doi.org/10.1007/978-981-10-5122-7_250

    Article  Google Scholar 

  16. Akhtari-Zavare, M., Latiff, L.: Electrical impedance tomography as a primary screening technique for breast cancer detection. Asian Pac. J. Cancer Prev. 16(14), 5595–5597 (2015). https://doi.org/10.7314/apjcp.2015.16.14.5595

    Article  Google Scholar 

  17. Brown, B., Leathard, A., Sinton, A., McArdle, F., Smith, R., Barber, D.: Blood flow imaging using electrical impedance tomography. Clin. Phys. Physiol. Meas. 13, 175–179 (1992). https://doi.org/10.1088/0143-0815/13/a/034

    Article  Google Scholar 

  18. Shi, X., You, F., Fu, F., Liu, R., You Y, Dai M., Dong, X.: Preliminary research on monitoring of cerebral ischemia using electrical impedance tomography technique. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2008). https://doi.org/10.1109/iembs.2008.4649375

  19. Yorkey, T., Webster, J., Tompkins, W.: Comparing reconstruction algorithms for electrical impedance tomography. IEEE Trans. Biomed. Eng. 34(11), 843–852 (1987). https://doi.org/10.1109/tbme.1987.326032

    Article  Google Scholar 

  20. Dimas, C., Tsampas, P., Ouzounoglou, N., Sotiriadis, P.: Development of a modular 64-electrodes electrical impedance tomography system. In: 6th International Conference MOCAST (2017). https://doi.org/10.1109/mocast.2017.7937666

  21. Dimas, V., Sotiriadis, P.: Conductivity distribution measurement at different low frequencies using a modular 64 electrode electrical impedance tomography system. In: Panhellenic Conference on Electronics and Telecommunications PACET (2017). https://doi.org/10.1109/pacet.2017.8259973

  22. Hyvönen, N., Majander, H., Staboulis, S.: Compensation for geometric modeling errors by positioning of electrodes in electrical impedance tomography. Inverse Prob. 33(3), 035 (2017). https://doi.org/10.1088/1361-6420/aa59d0

    Article  MathSciNet  MATH  Google Scholar 

  23. Fritsch, H., Kuehnel, W.: Color Atlas of Human Anatomy. Stuttgart (2014)

    Google Scholar 

  24. Fan, N., Wang, P., Tang, L., Liu, X.: Ocular blood flow and normal tension glaucoma. Biomed. Res. Int. 2015, 1–7 (2015). https://doi.org/10.1155/2015/308505

    Article  Google Scholar 

  25. Luzhnov, P.V., Shamaev, D.M., Iomdina, E.N., et al.: Transpalpebral tetrapolar reoophtalmography in the assessment of parameters of the eye blood circulatory system. Vestn. Ross. Akad. Med. Nauk 70(3), 372–377 (2015). https://doi.org/10.15690/vramn.v70i3.1336

    Article  Google Scholar 

  26. Shamaev, D.M., Luzhnov, P.V., Iomdina, E.N.: Mathematical modeling of ocular pulse blood filling in rheoophthalmography. IFMBE Proc. 68(1), 495–498 (2018). https://doi.org/10.1007/978-981-10-9035-6_91

    Article  Google Scholar 

  27. Luzhnov, P.V., Shamaev, D.M., Kiseleva, A.A., Iomdina, E.N., et al.: Analyzing rheoophthalmic signals in glaucoma by nonlinear dynamics methods. IFMBE Proc. 68(2), 827–831 (2018). https://doi.org/10.1007/978-981-10-9038-7_152

    Article  Google Scholar 

  28. Cassani, S.: Blood circulation and aqueous humor flow in the eye: multi-scale modeling and clinical applications. Purdue University, Ph.D. (2016)

    Google Scholar 

Download references

Acknowledgements

The paper was supported by a grant from RFBR (No. 18-08-01192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr V. Luzhnov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kiseleva, A.A., Luzhnov, P.V., Shamaev, D.M. (2020). Verification of Mathematical Model for Bioimpedance Diagnostics of the Blood Flow in Cerebral Vessels. In: Hu, Z., Petoukhov, S., He, M. (eds) Advances in Artificial Systems for Medicine and Education II. AIMEE2018 2018. Advances in Intelligent Systems and Computing, vol 902. Springer, Cham. https://doi.org/10.1007/978-3-030-12082-5_23

Download citation

Publish with us

Policies and ethics