Skip to main content

The Genetic Language: Natural Algorithms, Developmental Patterns, and Instinctive Behavior

  • Conference paper
  • First Online:
Advances in Artificial Systems for Medicine and Education II (AIMEE2018 2018)

Abstract

The genetic system of biological organisms possesses a structure which corresponds to the general principles of linguistics and can be defined as the genetic language. In this study, we suggest to analyze the mechanisms for interpretation of genetic texts based on the universal model of operation of the programs in electronic computers as initially suggested by Efim Liberman. Ontogenetic development is realized at the level of reading of genetic texts by the structure named by Liberman as a molecular computer of the cell (MCC), which includes DNA, RNA, and the corresponding enzymes that work with molecular addresses. The main feature of the biological computer is the search for addresses using the thermal Brownian motion and the complex formation of weak bonds without the cost of free energy. The implementation of genetic programs takes place not only in the course of individual development, characterized by the encoding of the sequences of reading proteins, but also in the execution of instinctive behavior. The description of external reality occurs in terms of the genetic language in all living beings. In addition, the reality is universally described in the natural (human) language. In both cases, the description is implemented in the form of using models, the calculation of which allows prediction of the future of the simulated reality and its management. The success of such control depends on the choice of model and the correct scale, which determines the energy and time spent on the calculation. This quantity, equal to the production of energy and time, is quantized and is related to Planck’s constant. An attempt has been made to construct a semantic system of the genetic language, for which a deliberately narrowed but instrumental definition of “text” and “meaning” is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saussure, F. de: Course in General Linguistics, 1911 pp. McGraw-Hill Humanities (1965)

    Google Scholar 

  2. Eco, U.: The Role of the Reader Explorations in the Semiotics of Texts. University of Indiana Press, Bloomington (1979)

    Google Scholar 

  3. Finn, V.K.: Toward logical-semantic issues in the theory of text comprehension. Autom. Doc. Math. Linguist. 44(5), 235–245 (2010)

    Article  Google Scholar 

  4. Liberman, E.A.: Cell as a molecular computer (MCC). Biofizika 17, 932–943 (1972)

    Google Scholar 

  5. Liberman, E.A.: Molecular computer—biological physics and physics of real world. Biofizika 23, 1118–1121 (1978)

    Google Scholar 

  6. Liberman, E.A.: Analog–digital molecular cell computer. BioSystems 11, 111–124 (1979)

    Article  Google Scholar 

  7. Liberman, E.A.: Molecular quantum computers. Biofizika 34, 913–925 (1989)

    Google Scholar 

  8. Liberman, E.A.: Biophysical and mathematical principles and biological information. Biofizika 42, 988–991 (1997)

    Google Scholar 

  9. Gamkrelidze, T.V.: The unconscious and the problem of isomorphism between the genetic code and semiotic systems. Folia Linguist. 23, 1–5 (1989). Hockett, 1960

    Google Scholar 

  10. Jacob, F.: The linguistic model in biology. In: van Schooneveld, C.H., Armstrong, D. (eds.) Roman Jakobson. Echoes of His Scholarship. Peter de Ridder, Lisse (1977)

    Google Scholar 

  11. Jakobson, R.: Selected Writings, vol. 2. Mouton, Hague (1971)

    Google Scholar 

  12. Trifonov, E.N.: The multiple codes of nucleotide sequences. Bull. Math. Biol. 51, 417–432 (1989)

    Article  Google Scholar 

  13. Popov, O., Segal, D.M., Trifonov, E.N.: Linguistic complexity of protein sequences as compared to texts of human languages. BioSystems 38, 65–74 (1996)

    Article  Google Scholar 

  14. Collado-Vides, J.: A transformational-grammar approach to the study of the regulation of gene expression. J. Theor. Biol. 136, 403–425 (1989)

    Article  Google Scholar 

  15. Collado-Vides, J.: Grammatical model of the regulation of gene expression. Proc. Natl. Acad. Sci. USA 89, 9405–9409 (1992)

    Article  Google Scholar 

  16. Monod, J., Jacob, F.: Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb. Symp. Quant. Biol. 26, 389–401 (1961)

    Article  Google Scholar 

  17. Mantegna, R.N., Buldyrev, S.V., Goldberger, A.L., Havlin, S., Peng, C.K., Simons, M., Stanley, H.E.: Linguistic features of noncoding DNA sequences. Phys. Rev. Lett. 3, 3169–3172 (1994)

    Article  Google Scholar 

  18. Ji, S.: Isomorphism between cell and human languages: molecular biological, bioinformatic and linguistic implications. BioSystems 44, 17–39 (1997)

    Article  Google Scholar 

  19. Hockett, C.F.: The origin of speech. Sci. Am. 203, 89–96 (1960)

    Article  Google Scholar 

  20. Ji, S.: The cell as the smallest DNA-based molecular computer. BioSystems 52, 123–133 (1999)

    Article  Google Scholar 

  21. Liberman, E.A., Minina, S.V., Shklovsky-Kordi, N.E.: Quantum molecular computer model of the neuron and a pathway to the union of the sciences. BioSystems 22, 135–154 (1989)

    Article  Google Scholar 

  22. Conrad, M.: Molecular and evolutionary computation: the tug of war between context freedom and context sensitivity. BioSystems 52, 99–110 (1999)

    Article  Google Scholar 

  23. Conrad, M., Zauner, K.P.: DNA as a vehicle for the self-assembly model of computing. BioSystems 45, 59–66 (1998)

    Article  Google Scholar 

  24. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  25. Weinzweig, M.N., Liberman, E.A.: Formal description of cell molecular computer. Biofizika 18, 939–942 (1973)

    Google Scholar 

  26. Von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Urbana (1966)

    Google Scholar 

  27. Conrad, M., Liberman, E.A.: Molecular computing as a link between biological and physical theory. J. Theor. Biol. 98, 239–252 (1982)

    Article  Google Scholar 

  28. Liberman, E.A.: Extremal molecular quantum regulator. Biofizika 28, 183–185 (1983)

    Google Scholar 

  29. Minina, S.V., Liberman, E.A.: Input and output ionic channels of quantum biocomputer. Biofizika 35, 132–136 (1990)

    Google Scholar 

  30. Liberman, E.A., Minina, S.V.: Cell molecular computers and biological information as the foundation of nature’s laws. BioSystems 38, 173–177 (1996)

    Article  Google Scholar 

  31. Liberman, E.A., Minina, S.V., Shklovsky-Kordi, N.E.: Biological information and laws of nature. BioSystems 46, 103–106 (1998)

    Article  Google Scholar 

  32. Liberman, E.A., Minina, S.V., Shklovsky-Kordi, N.E.: Problems combining biology, physics, and mathematics. Ideas of the new science. Biofizika 46, 765–767 (2001)

    Google Scholar 

  33. Igamberdiev, A.U.: Quantum computation, non-demolition measurements, and reflective control in living systems. BioSystems 77, 47–56 (2004)

    Article  Google Scholar 

  34. Igamberdiev, A.U.: Physical limits of computation and emergence of life. BioSystems 90, 340–349 (2007)

    Article  Google Scholar 

  35. Igamberdiev, A.U., Shklovskiy-Kordi, N.E.: Computational power and generative capacity of genetic systems. BioSystems 142–143, 1–8 (2016)

    Article  Google Scholar 

  36. Igamberdiev, A.U., Shklovskiy-Kordi, N.E.: The quantum basis of spatiotemporality in perception and consciousness. Prog. Biophys. Mol. Biol. 130, 15–25 (2017)

    Article  Google Scholar 

  37. Isalan, M.: Gene networks and liar paradoxes. BioEssays 31, 1110–1115 (2009)

    Article  Google Scholar 

  38. Kaur, S., Verma, A.: An efficient approach to genetic algorithm for task scheduling in cloud computing environment. Int. J. Inf. Technol. Comput. Sci. (IJITCS) 4(10), 74–79 (2012). https://doi.org/10.5815/ijitcs.2012.10.09

    Article  Google Scholar 

  39. Kumar, K., Thakur, G.S.M.: Advanced applications of neural networks and artificial intelligence: a review. Int. J. Inf. Technol. Comput. Sci. (IJITCS) 4(6), 57–68 (2012). https://doi.org/10.5815/ijitcs.2012.06.08

    Article  Google Scholar 

  40. Ebrahimzadeh, R., Jampour, M.: Chaotic genetic algorithm based on Lorenz chaotic system for optimization problems. Int. J. Intell. Syst. Appl. (IJISA) 5(5), 19–24 (2013). https://doi.org/10.5815/ijisa.2013.05.03

    Article  Google Scholar 

  41. Lytvyn, V., Vysotska, V., Peleshchak, I., Rishnyak, I., Peleshchak, R.: Time dependence of the output signal morphology for nonlinear oscillator neuron based on Van der Pol model. Int. J. Intell. Syst. Appl. (IJISA) 10(4), 8–17 (2018). https://doi.org/10.5815/ijisa.2018.04.02

    Article  Google Scholar 

  42. Babichev, S., Korobchynskyi, M., Mieshkov, S., Korchomnyi, O.: An effectiveness evaluation of information technology of gene expression profiles processing for gene networks reconstruction. Int. J. Intell. Syst. Appl. (IJISA) 10(7), 1–10 (2018). https://doi.org/10.5815/ijisa.2018.07.01

    Article  Google Scholar 

  43. Bilgaiyan, S., Aditya, K., Mishra, S., Das, M.: A swarm intelligence based chaotic morphological approach for software development cost estimation. Int. J. Intell. Syst. Appl. (IJISA) 10(9), 13–22 (2018). https://doi.org/10.5815/ijisa.2018.09.02

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abir U. Igamberdiev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shklovskiy-Kordi, N.E., Finn, V.K., Ehrlich, L.I., Igamberdiev, A.U. (2020). The Genetic Language: Natural Algorithms, Developmental Patterns, and Instinctive Behavior. In: Hu, Z., Petoukhov, S., He, M. (eds) Advances in Artificial Systems for Medicine and Education II. AIMEE2018 2018. Advances in Intelligent Systems and Computing, vol 902. Springer, Cham. https://doi.org/10.1007/978-3-030-12082-5_16

Download citation

Publish with us

Policies and ethics