Skip to main content

Genetic Code Modelling from the Perspective of Quantum Informatics

  • Conference paper
  • First Online:
Advances in Artificial Systems for Medicine and Education II (AIMEE2018 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 902))

Abstract

This paper’s aim is to show the possibilities of modelling the information content carried by quantum mechanical DNA molecules by means of the formalism used in quantum informatics. Such modelling would open new options to reveal nature’s information patents and to use them, for instance, in quantum computing and artificial intelligence (A.I.). Moreover, it would give an opportunity of understanding the ways of managing information in living organisms. As an empirical base, the open accessible data from GenBank which contains hundreds of millions of long DNA texts collected from thousands of organisms can be used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watson, J.D., Crick, F.H.C.: Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature. Band 171, S. 737–738, 25 (April 1953). https://doi.org/10.1038/171737a0

  2. Stewart, I.: Life’s Other Secret: The New Mathematics of the Living World. Penguin, New York (1999)

    Google Scholar 

  3. Matsuno, K., Paton, R.C.: Is there a biology of quantum information? BioSystems 55, 39–46 (2000)

    Article  Google Scholar 

  4. Karafyllidis, I.G.: Quantum mechanical model for information transfer from DNA to protein. Biosystems 93(3), 191–8 (2008)

    Article  Google Scholar 

  5. Patel, A.: Quantum Algorithms and the Genetic Code. arXiv:quant-ph/0002037 (2001)

  6. Fimmel, E., Danielli, A., Strüngmann, L.: On dichotomic classes and bijections of the genetic code. J. Theor. Biol. 336, 221–230 (2013)

    Article  MathSciNet  Google Scholar 

  7. Gumbel, M., Fimmel, E., Danielli, A., Strüngmann, L.: On models of the genetic code generated by binary dichotomic algorithms. BioSystems 128, 9–18 (2015)

    Article  Google Scholar 

  8. Petoukhov, S.V., He, M.: Symmetrical Analysis Techniques for Genetic Systems and Bioinformatics: Advanced Patterns and Applications. IGI Global, Hershey, USA (2009)

    Google Scholar 

  9. Fimmel, E., Strüngmann, L.: Mathematical Fundamentals for the noise immunity of the genetic code. BioSystems 164, 186–198 (2018)

    Article  Google Scholar 

  10. Fimmel, E., Gumbel, M., Strüngmann, L.: Exploring structure and evolution of the genetic code with the software tool GCAT. In: AIMEE 2017: Advances in Artificial Systems for Medicine and Education, 658, pp. 14–22. Springer, Berlin (2018). https://doi.org/10.1007/978-3-319-67349-3-2

  11. Petoukhov, S.V.: The system-resonance approach in modeling genetic structures. Biosystems 139, 1–11 (2016)

    Article  Google Scholar 

  12. Petoukhov, S.V.: Genetic coding and united-hypercomplex systems in the models of algebraic biology. Biosystems 158, 31–46 (2017)

    Article  Google Scholar 

  13. Petoukhov, S.V.: The rules of long DNA-sequences and tetra-groups of oligonucleotides. https://arxiv.org/abs/1709.04943, the 4th version (25.12.2017)

  14. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2010)

    Book  Google Scholar 

  15. Petoukhov, S.V., Petukhova, E.S., Svirin, V.I.: New symmetries and fractal-like structures in the genetic coding system. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds.) Advances in Computer Science for Engineering and Education. ICCSEEA 2018. Advances in Intelligent Systems and Computing, vol. 754. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91008-6_59

  16. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloud, S. Quantum machine learning. Nature 549, 195–202 (14 Sept 2017). https://doi.org/10.1038/nature23474

  17. Abo-Zahhad, M., Ahmed, S.M., Abd-Elrahman, S.A.: Genomic analysis and classification of exon and intron sequences using DNA numerical mapping techniques. Int. J. Inf. Technol. Comput. Sci. (IJITCS) 4(8), 22–36 (2012). https://doi.org/10.5815/ijitcs.2012.08.03

  18. Hossein, S.M., Roy, S.: A compression & encryption algorithm on DNA sequences using dynamic look up table and modified Huffman techniques. Int. J. Inf. Technol. Comput. Sci. (IJITCS) 5(10), 39–61 (2013). https://doi.org/10.5815/ijitcs.2013.10.05

  19. Meher, J.K., Panigrahi, M.R., Dash, G.N., Meher, P.K.: Wavelet based lossless DNA sequence compression for faster detection of eukaryotic protein coding regions. Int. J. Image Graph. Signal Process. (IJIGSP) 4(7), 47–53 (2012). https://doi.org/10.5815/ijigsp.2012.07.05

  20. Fimmel, E., Michel, ChJ, Strüngmann, L.: Diletter circular codes over finite alphabets. Math. Biosci. 10(294), 120–129 (2017). https://doi.org/10.1016/j.mbs.2017.10.001

    Article  MathSciNet  MATH  Google Scholar 

  21. Fimmel, E., Michel, ChJ, Strüngmann, L.: Strong comma-free codes in genetic information. Bull. Math. Biol. 79(8), 1796–1819 (2017). https://doi.org/10.1007/s11538-017-0307-0

    Article  MathSciNet  MATH  Google Scholar 

  22. Fimmel, E., Strüngmann, L.: Codon distribution in error-detecting circular codes. Life 6(1), 14 (2016). https://doi.org/10.3390/life6010014

  23. Fimmel, E., Michel, ChJ, Strüngmann, L.: n-nucleotide circular codes in graph theory. Phil. Trans. R. Soc. A 374, 20150058 (2016)

    Article  MathSciNet  Google Scholar 

  24. Fimmel, E., Giannerini, S., Gonzalez, D., Strüngmann, L.: Circular codes, symmetries and transformations. J. Math. Biol. 70(7), 1623–44 (2014)

    Article  MathSciNet  Google Scholar 

  25. Fickett, J.W., Burks, C.: Development of a database for nucleotide sequences. In: Waterman, M.S. (ed.) Mathematical Methods for DNA Sequences, pp. 1–34. CRC Press, Inc., Florida (1989)

    Google Scholar 

  26. Kraljic, K., Strüngmann, L., Fimmel, E., Gumbel, M.: Genetic code analysis toolkit: a novel tool to explore the coding properties of the genetic code and DNA sequences. SoftwareX 7, 1214, (January–June 2018), https://doi.org/10.1016/j.softx.2017.10.008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Fimmel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fimmel, E., Petoukhov, S.V. (2020). Genetic Code Modelling from the Perspective of Quantum Informatics. In: Hu, Z., Petoukhov, S., He, M. (eds) Advances in Artificial Systems for Medicine and Education II. AIMEE2018 2018. Advances in Intelligent Systems and Computing, vol 902. Springer, Cham. https://doi.org/10.1007/978-3-030-12082-5_11

Download citation

Publish with us

Policies and ethics