Skip to main content

The Behavior of a Photovoltaic Module Under Shading, in the Presence of a Faulty Bypass Diode

  • Conference paper
  • First Online:
Book cover Advanced Intelligent Systems for Sustainable Development (AI2SD’2018) (AI2SD 2018)

Abstract

Keeping low-cost industrial systems in operational condition has become a critical factor in business performance. At the moment, the forecast maintenance proves to be an essential activity in order not to incur untimely maintenance costs.

In photovoltaic and wind renewable energy production systems where production is dependent on meteorological conditions, the study of the failures of these systems is essential in order to identify them and to be able to develop a working methodology to predict degradation and thus be able to maximize energy production.

In this paper we will study the behavior of a photovoltaic (PV) generator composed of two modules which are M1 and M2. Since M1 is unshaded, we focus on M2 which is shaded and work at different irradiations levels with a bypass diode failure using the Power-Voltage (P-V) characteristics. Bypass diodes are critical components in PV modules as they provide protection against the shading effect. Failure of bypass diode in short circuit reduces the PV module power, while diode failure in open circuit leaves the module susceptible for extreme hotspot heating and potentially fire hazard.

This study will enable us to be able to prematurely detect and locate these failures and thus guarantee a good efficiency in the maintenance interventions, a reduction in costs and, consequently, a better productivity by increasing the rate of availability of the installations. For that, we will simulate the electric model of a module under Psim software which is a complete modeling tool oriented towards electrical engineering and compare the results obtained with the model of the panel given by Psim library.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dhimish, M., Holmes, V., Mehrdadi, B., Dales, M., Mather, P.: Detecting defective bypass diodes in photovoltaic modules using Mamdani fuzzy logic system. Glob. J. Res. Eng. (F) Electr. Electron. Eng. 17(5), 33–44 (2017). Version 1.0

    Google Scholar 

  2. Bun, L.: Détection et localisation de défauts pour un système PV. Thèse de doctorat, Laboratoire de génie électrique de Grenoble (G2ELAB), Université de Grenoble (2011)

    Google Scholar 

  3. Shiradkar, N.: Predictive modeling for assessing the reliability of bypass diodes in photovoltaic modules. Electronic Theses and dissertations. 1401. University of Central Florida (2015). http://stars.library.ucf.edu/etd/1401

  4. Matter, K., El-Khozondar, H.J., El-Khozondar, R.J., Suntio, T.: Matlab/Simulink modeling to study the effect of partially shaded condition on photovoltaic array’s maximum power point. Int. Res. J. Eng. Technol. 2(2), 697–703 (2015)

    Google Scholar 

  5. Silvestre, S., Boronat, A., Chouder, A.: Study of bypass diodes configuration on PV modules. Appl. Energy 86, 1632–1640 (2009)

    Article  Google Scholar 

  6. Notton, G., Caluianu, I., Colda, I., Caluianu, S.: Influence d’un ombrage partiel sur la production électrique d’un module photovoltaïque en silicium monocristallin. Rev. Energ. Renouvelables 13(1), 49–62 (2010)

    Google Scholar 

  7. Orozco-Gutierrez, M.L., Ramirez-Scarpetta, J.M., Spagnuolo, G., Ramos-Paja, C.A.: A technique for mismatched PV array simulation. Renew. Energy 55, 417–427 (2013)

    Article  Google Scholar 

  8. Petrone, G., Spagnuolo, G., Vitelli, M.: Analytical model of mismatched photovoltaic fields by means of Lambert W-function. Sol. Energy Mater. Sol. Cells 91, 1652–1657 (2007)

    Article  Google Scholar 

  9. Motahhir, S., El Ghzizal, A., Sebti, S., Derouich, A.: Shading effect to energy withdrawn from the photovoltaic panel and implementation of DMPPT using C language. Int. Rev. Autom. Control (I.RE.A.CO.) 9(2), 88–94 (2016)

    Google Scholar 

  10. Villalva, M.G., Gazoli, J.R., Ruppert, E.F.: Modeling and circuit-based simulation of photovoltaic array. Braz. J. Power Electron. 14(1), 35–45 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Zebiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zebiri, M., Mediouni, M., Idadoub, H. (2019). The Behavior of a Photovoltaic Module Under Shading, in the Presence of a Faulty Bypass Diode. In: Ezziyyani, M. (eds) Advanced Intelligent Systems for Sustainable Development (AI2SD’2018). AI2SD 2018. Advances in Intelligent Systems and Computing, vol 912. Springer, Cham. https://doi.org/10.1007/978-3-030-12065-8_8

Download citation

Publish with us

Policies and ethics