Skip to main content

Structural and Vibrational Study of Hydroxyapatite Bio-ceramic Pigments with Chromophore Ions (Co2+, Ni2+, Cu2+, Mn2+)

  • Conference paper
  • First Online:
Advanced Intelligent Systems for Sustainable Development (AI2SD’2018) (AI2SD 2018)

Abstract

Incorporating metal ions into a calcium hydroxyapatite structure is a successful pathway to increase their physical, chemical and biological properties. The calcium hydroxyapatite was obtained by solid state method at a high temperature, using CaCO3 and (NH4)2HPO4 as sources of calcium and phosphorus. Metal ion (Mn2+, Co2+, Ni2+, Cu2+) incorporation was carried out by dint of grinding and high temperature effect to remove all the impurity. The Hydroxyapatite powders that doped with metal ions were characterized by X-ray diffraction (XRD), and Fourier transforms infrared spectroscopy (FTIR) analysis to evaluate the structural and compositional changes. The only phase that is presented in pure hydroxyapatite sample was the hexagonal system. A Rietveld refinement has shown that doping with these ions affects the volume unit cell of HAP-M and it will be changed. We found that the samples doped HAP-M (M = Mn2+, Co2+, Ni2+, Cu2+) stabilizes only in the monoclinic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma, G., Liu, X.Y.: Hydroxyapatite: hexagonal or monoclinic? Cryst. Growth Des. 9(7), 2991–2994 (2009)

    Article  Google Scholar 

  2. Bahrololoom, M.E., Javidi, M., Javadpoura, S., Ma, J.: Characterisation of natural hydroxyapatite extracted from bovine cortical bone ash. J. Ceram. Process. Res. 10(2), 129–138 (2009)

    Google Scholar 

  3. Sopyan, I., Mel, M., Ramesh, S., Khalid, K.A.: Porous hydroxyapatite for artificial bone applications. Sci. Technol. Adv. Mater. 8(1), 116–123 (2007)

    Article  Google Scholar 

  4. Zhou, H., Wu, T., Dong, X., Wang, Q., Shen, J.: Adsorption mechanism of BMP-7 on hydroxyapatite (001) surfaces. Biochem. Biophys. Res. Commun. 361(1), 91–96 (2007)

    Article  Google Scholar 

  5. Rusu, V.M., Ng, C.H., Wilke, M., Tiersch, B., Fratzl, P., Peter, M.G.: Size-controlled hydroxyapatite nanoparticles as self-organized organic–inorganic composite materials. Biomaterials 26(26), 5414–5426 (2005)

    Article  Google Scholar 

  6. Arey, J.S., Seaman, J.C., Bertsch, P.M.: Immobilization of uranium in contaminated sediments by hydroxyapatite addition. Environ. Sci. Technol. 33(2), 337–342 (1998)

    Article  Google Scholar 

  7. Gibson, I.R., Bonfield, W.: Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. J. Biomed. Mater. Res. Part A 59(4), 697–708 (2002)

    Article  Google Scholar 

  8. Miao, X., Tan, D.M., Li, J., Xiao, Y., Crawford, R.: Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly (lactic-co-glycolic acid). Acta Biomater. 4(3), 638–645 (2008)

    Article  Google Scholar 

  9. Suchanek, W., Yoshimura, M.: Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res. 13(1), 94–117 (1998)

    Article  Google Scholar 

  10. Ito, M., Hidaka, Y., Nakajima, M., Yagasaki, H., Kafrawy, A.H.: Effect of hydroxyapatite content on physical properties and connective tissue reactions to a chitosan–hydroxyapatite composite membrane. J. Biomed. Mater. Res. Part A 45(3), 204–208 (1999)

    Article  Google Scholar 

  11. Akao, M., Aoki, H., Kato, K.: Mechanical properties of sintered hydroxyapatite for prosthetic applications. J. Mater. Sci. 16(3), 809–812 (1981)

    Article  Google Scholar 

  12. Hedia, H.S., Mahmoud, N.A.: Design optimization of functionally graded dental implant. Bio-Med. Mater. Eng. 14(2), 133–143 (2004)

    Google Scholar 

  13. Pizzini, S., Roberts, K.J., Dring, I.S., Oldman, R.J., Cupertino, D.C.: Application of X-ray absorption spectroscopy to the structural characterisation of monodispersed benzotriazole coatings on partly oxidised copper thin films. J. Mater. Chem. 3(8), 811–819 (1993)

    Article  Google Scholar 

  14. Nejati, E., Firouzdor, V., Eslaminejad, M.B., Bagheri, F.: Needle-like nano hydroxyapatite/poly (l-lactide acid) composite scaffold for bone tissue engineering application. Mater. Sci. Eng. C 29(3), 942–949 (2009)

    Article  Google Scholar 

  15. Holzwarth, U., Gibson, N.: The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol. 6(9), 534 (2011)

    Article  Google Scholar 

  16. Zhou, J., Zhang, X., Chen, J., Zeng, S., De Groot, K.: High temperature characteristics of synthetic hydroxyapatite. J. Mater. Sci. Mater. Med. 4(1), 83–85 (1993)

    Article  Google Scholar 

  17. Elliott, J.C.: Monoclinic space group of hydroxyapatite. Nature 230(11), 72 (1971)

    Google Scholar 

  18. Kraus, W., Nolze, G.: POWDER CELL–a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Crystallogr. 29(3), 301–303 (1996)

    Article  Google Scholar 

  19. Zhu, M., Aikens, C.M., Hollander, F.J., Schatz, G.C., Jin, R.: Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 130(18), 5883–5885 (2008)

    Article  Google Scholar 

  20. French, R.H., Glass, S.J., Ohuchi, F.S., Xu, Y.N., Ching, W.Y.: Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO 2. Phys. Rev. B 49(8), 5133 (1994)

    Article  Google Scholar 

  21. Young, R.A., Elliott, J.C.: Atomic-scale bases for several properties of apatites. Arch. Oral Biol. 11(7), 699–707 (1966)

    Article  Google Scholar 

  22. Pedone, A., Corno, M., Civalleri, B., Malavasi, G., Menziani, M., Segrea, U., Ugliengo, P.: An ab initio parameterized interatomic force field for hydroxyapatite. J. Mater. Chem. 17(20), 2061–2068 (2007)

    Article  Google Scholar 

  23. Benramache, S., Benhaoua, B.: Influence of annealing temperature on structural and optical properties of ZnO: in thin films prepared by ultrasonic spray technique. Superlattices Microstruct. 52(6), 1062–1070 (2012)

    Article  Google Scholar 

  24. Fu, B., Sun, X., Qian, W., Shen, Y., Chen, R., Hannig, M.: Evidence of chemical bonding to hydroxyapatite by phosphoric acid esters. Biomaterials 26(25), 5104–5110 (2005)

    Article  Google Scholar 

  25. Ling, Y., Rios, H.F., Myers, E.R., Lu, Y., Fezng, J.Q., Boskey, A.L.: DMP1 depletion decreases bone mineralization in vivo: an FTIR imaging analysis. J. Bone Miner. Res. 20(12), 2169–2177 (2005)

    Article  Google Scholar 

  26. Wang, A., Liu, D., Yin, H., Wu, H., Wada, Y., Ren, M., Jiang, T., Cheng, X., Xu, Y.: Size-controlled synthesis of hydroxyapatite nanorods by chemical precipitation in the presence of organic modifiers. Mater. Sci. Eng. C 27(4), 865–869 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El-Hami Khalil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohammed, E., Bouazza, T., Khalil, EH. (2019). Structural and Vibrational Study of Hydroxyapatite Bio-ceramic Pigments with Chromophore Ions (Co2+, Ni2+, Cu2+, Mn2+). In: Ezziyyani, M. (eds) Advanced Intelligent Systems for Sustainable Development (AI2SD’2018). AI2SD 2018. Advances in Intelligent Systems and Computing, vol 912. Springer, Cham. https://doi.org/10.1007/978-3-030-12065-8_7

Download citation

Publish with us

Policies and ethics