Structural and Vibrational Study of Hydroxyapatite Bio-ceramic Pigments with Chromophore Ions (Co2+, Ni2+, Cu2+, Mn2+)

  • Eddya Mohammed
  • Tbib Bouazza
  • El-Hami KhalilEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 912)


Incorporating metal ions into a calcium hydroxyapatite structure is a successful pathway to increase their physical, chemical and biological properties. The calcium hydroxyapatite was obtained by solid state method at a high temperature, using CaCO3 and (NH4)2HPO4 as sources of calcium and phosphorus. Metal ion (Mn2+, Co2+, Ni2+, Cu2+) incorporation was carried out by dint of grinding and high temperature effect to remove all the impurity. The Hydroxyapatite powders that doped with metal ions were characterized by X-ray diffraction (XRD), and Fourier transforms infrared spectroscopy (FTIR) analysis to evaluate the structural and compositional changes. The only phase that is presented in pure hydroxyapatite sample was the hexagonal system. A Rietveld refinement has shown that doping with these ions affects the volume unit cell of HAP-M and it will be changed. We found that the samples doped HAP-M (M = Mn2+, Co2+, Ni2+, Cu2+) stabilizes only in the monoclinic phase.


Hydroxyapatite X-ray diffraction Rietveld refinement 


  1. 1.
    Ma, G., Liu, X.Y.: Hydroxyapatite: hexagonal or monoclinic? Cryst. Growth Des. 9(7), 2991–2994 (2009)CrossRefGoogle Scholar
  2. 2.
    Bahrololoom, M.E., Javidi, M., Javadpoura, S., Ma, J.: Characterisation of natural hydroxyapatite extracted from bovine cortical bone ash. J. Ceram. Process. Res. 10(2), 129–138 (2009)Google Scholar
  3. 3.
    Sopyan, I., Mel, M., Ramesh, S., Khalid, K.A.: Porous hydroxyapatite for artificial bone applications. Sci. Technol. Adv. Mater. 8(1), 116–123 (2007)CrossRefGoogle Scholar
  4. 4.
    Zhou, H., Wu, T., Dong, X., Wang, Q., Shen, J.: Adsorption mechanism of BMP-7 on hydroxyapatite (001) surfaces. Biochem. Biophys. Res. Commun. 361(1), 91–96 (2007)CrossRefGoogle Scholar
  5. 5.
    Rusu, V.M., Ng, C.H., Wilke, M., Tiersch, B., Fratzl, P., Peter, M.G.: Size-controlled hydroxyapatite nanoparticles as self-organized organic–inorganic composite materials. Biomaterials 26(26), 5414–5426 (2005)CrossRefGoogle Scholar
  6. 6.
    Arey, J.S., Seaman, J.C., Bertsch, P.M.: Immobilization of uranium in contaminated sediments by hydroxyapatite addition. Environ. Sci. Technol. 33(2), 337–342 (1998)CrossRefGoogle Scholar
  7. 7.
    Gibson, I.R., Bonfield, W.: Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. J. Biomed. Mater. Res. Part A 59(4), 697–708 (2002)CrossRefGoogle Scholar
  8. 8.
    Miao, X., Tan, D.M., Li, J., Xiao, Y., Crawford, R.: Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly (lactic-co-glycolic acid). Acta Biomater. 4(3), 638–645 (2008)CrossRefGoogle Scholar
  9. 9.
    Suchanek, W., Yoshimura, M.: Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res. 13(1), 94–117 (1998)CrossRefGoogle Scholar
  10. 10.
    Ito, M., Hidaka, Y., Nakajima, M., Yagasaki, H., Kafrawy, A.H.: Effect of hydroxyapatite content on physical properties and connective tissue reactions to a chitosan–hydroxyapatite composite membrane. J. Biomed. Mater. Res. Part A 45(3), 204–208 (1999)CrossRefGoogle Scholar
  11. 11.
    Akao, M., Aoki, H., Kato, K.: Mechanical properties of sintered hydroxyapatite for prosthetic applications. J. Mater. Sci. 16(3), 809–812 (1981)CrossRefGoogle Scholar
  12. 12.
    Hedia, H.S., Mahmoud, N.A.: Design optimization of functionally graded dental implant. Bio-Med. Mater. Eng. 14(2), 133–143 (2004)Google Scholar
  13. 13.
    Pizzini, S., Roberts, K.J., Dring, I.S., Oldman, R.J., Cupertino, D.C.: Application of X-ray absorption spectroscopy to the structural characterisation of monodispersed benzotriazole coatings on partly oxidised copper thin films. J. Mater. Chem. 3(8), 811–819 (1993)CrossRefGoogle Scholar
  14. 14.
    Nejati, E., Firouzdor, V., Eslaminejad, M.B., Bagheri, F.: Needle-like nano hydroxyapatite/poly (l-lactide acid) composite scaffold for bone tissue engineering application. Mater. Sci. Eng. C 29(3), 942–949 (2009)CrossRefGoogle Scholar
  15. 15.
    Holzwarth, U., Gibson, N.: The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol. 6(9), 534 (2011)CrossRefGoogle Scholar
  16. 16.
    Zhou, J., Zhang, X., Chen, J., Zeng, S., De Groot, K.: High temperature characteristics of synthetic hydroxyapatite. J. Mater. Sci. Mater. Med. 4(1), 83–85 (1993)CrossRefGoogle Scholar
  17. 17.
    Elliott, J.C.: Monoclinic space group of hydroxyapatite. Nature 230(11), 72 (1971)Google Scholar
  18. 18.
    Kraus, W., Nolze, G.: POWDER CELL–a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Crystallogr. 29(3), 301–303 (1996)CrossRefGoogle Scholar
  19. 19.
    Zhu, M., Aikens, C.M., Hollander, F.J., Schatz, G.C., Jin, R.: Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 130(18), 5883–5885 (2008)CrossRefGoogle Scholar
  20. 20.
    French, R.H., Glass, S.J., Ohuchi, F.S., Xu, Y.N., Ching, W.Y.: Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO 2. Phys. Rev. B 49(8), 5133 (1994)CrossRefGoogle Scholar
  21. 21.
    Young, R.A., Elliott, J.C.: Atomic-scale bases for several properties of apatites. Arch. Oral Biol. 11(7), 699–707 (1966)CrossRefGoogle Scholar
  22. 22.
    Pedone, A., Corno, M., Civalleri, B., Malavasi, G., Menziani, M., Segrea, U., Ugliengo, P.: An ab initio parameterized interatomic force field for hydroxyapatite. J. Mater. Chem. 17(20), 2061–2068 (2007)CrossRefGoogle Scholar
  23. 23.
    Benramache, S., Benhaoua, B.: Influence of annealing temperature on structural and optical properties of ZnO: in thin films prepared by ultrasonic spray technique. Superlattices Microstruct. 52(6), 1062–1070 (2012)CrossRefGoogle Scholar
  24. 24.
    Fu, B., Sun, X., Qian, W., Shen, Y., Chen, R., Hannig, M.: Evidence of chemical bonding to hydroxyapatite by phosphoric acid esters. Biomaterials 26(25), 5104–5110 (2005)CrossRefGoogle Scholar
  25. 25.
    Ling, Y., Rios, H.F., Myers, E.R., Lu, Y., Fezng, J.Q., Boskey, A.L.: DMP1 depletion decreases bone mineralization in vivo: an FTIR imaging analysis. J. Bone Miner. Res. 20(12), 2169–2177 (2005)CrossRefGoogle Scholar
  26. 26.
    Wang, A., Liu, D., Yin, H., Wu, H., Wada, Y., Ren, M., Jiang, T., Cheng, X., Xu, Y.: Size-controlled synthesis of hydroxyapatite nanorods by chemical precipitation in the presence of organic modifiers. Mater. Sci. Eng. C 27(4), 865–869 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Nanosciences and Modeling, Faculty of KhouribgaUniversity of Hassan 1stKhouribgaMorocco

Personalised recommendations