The Experimental Study and Modeling the Drying Kinetics of Mediterranean Mussel (Mytilus Galloprovincilis) Type by Convective Solar Energy

  • M. KouhilaEmail author
  • A. Idlimam
  • A. Lamharrar
  • H. Lamsyehe
  • H. Moussaoui
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 912)


Drying is a process of hydration and Elimination of water which allows the proliferation of microorganisms and development of chemical reactions without influencing morphological structure of Food Material, this research focused on the influence of temperature on drying kinetics of the Mediterranean mussels (mytilus galloprovincilis) as per the requirement for storage seafood. Convective drying kinetics and hygroscopic behavior of Mytilus Galloprovincilis was carried out in a solar dryer operating in forced convection. Experimental drying kinetics were measured at three air temperatures (50, 60, and 70 °C), and two air flow rates fixed at (300 and 150 m3.h−1) with ambient air temperature in the range of 22 to 38 °C, 18 to 27% for ambient humidity, 422 to 788 w/m2 and 530 to 898 w/m2 for flow solar irradiation inclined and horizontal respectively. Experimental data of Drying are collected to plot the characteristic curve drying. Nine mathematical models available in the literature using simulation for describing drying curve. The logarithmic model showed the best fitting of experimental data with a highest value of correlation coefficient (r), and lowest value of reduced chi-square (χ2).


Drying kinetics Mathematical model Mediterranean mussel Solar dryer 


  1. 1.
    Dincer, I.: Sun drying of sultana grapes. Dry. Technol. 14, 1827–1838 (1996)CrossRefGoogle Scholar
  2. 2.
    Boudinar, B., Mouhani, H., Bendou, A., Idlimam, A., Lamharrar, A.: Experimental study of the drying kinetics of the pink shrimps: Parapenaeus Longirostris type. J. Appl. Phys. 8(5), 23–28 (2016)Google Scholar
  3. 3.
    Prakash, V., Lonsane, B.K., Kumar P.R.: Fish processing of value-added products: an efficient tool for nutrition security and techno-economic development of the nation. In: Proceeding of the National Seminar on Fish for All National Launch, Kolkata, India, pp. 99–107 (2003)Google Scholar
  4. 4.
    Punekar S., Mandape, M.K.: Socio economic status of prawn in relation to post harvest technology and its impact in local fish market, Fresh Water Prawns. In: International Symposium, Kochi, India, pp. 146–150 (2003)Google Scholar
  5. 5.
    Szulmayer, W.: From Sun drying to solar dehydration. Food Technol. Aust. 23(9,10) (1971)Google Scholar
  6. 6.
    Petrova, I., Banthle, M., Eikevik, T.M.: Manufacturing of dry-cured ham: a review, part 2 drying kinetics, modeling and equipment. Eur. Food Res. Technol. 241(4), 447–458 (2015). Scholar
  7. 7.
    Galvao, M., Déborah, M., Pena, R.: Drying kinetics and hycroscopic behavior of pirarucu (Arapaima Gigas) fillet with different salt contents. Food Sci. Technol. 62(1), 144–151 (2015)Google Scholar
  8. 8.
    Idlimam, A., Lamharrar, A., El Houssayne, B., Kouhila, M., El Khadir, L.: Solar convective drying in thin layers and modeling of municipal waste at three temperatures. Appl. Therm. Eng. 108, 41–47 (2016)CrossRefGoogle Scholar
  9. 9.
    Kouhila, M.: Étude expérimentale et théorique de cinétiques de séchage convective partiellement solaire des plantes médicinales et aromatiques (menthe. Verveine. Sauge et eucalyptus), Thèse de Doctorat d’Etat. Université Cadi Ayyad Marrakech, Morocco (2001)Google Scholar
  10. 10.
    Kouhila, M., Belghit, A., Daguenet, M.: Détermination expérimentale et théorique des courbes de sorption et de la cinétique de séchage de la menthe verte. Entropie, 20–31 (2001)Google Scholar
  11. 11.
    AitMohamed, L., Kouhila, M., Jamali, A., Lahsani, S., Kechaou, N., Mahrouz, M.: Single layer solar drying behaviour of citrus aurantium leaves under forced Convection. Energy Convers. Manag. 46, 1473–1483 (2005)CrossRefGoogle Scholar
  12. 12.
    Van Meel, D.A.: Adiabatic convection batch drying with recirculation of air. Chem. Eng. Sci. 9, 36–44 (1958)CrossRefGoogle Scholar
  13. 13.
    Timoumi, S., Zagrouba, F.: Water sorption and dehydration kinetics of Tunisian rosemary leaves. Desalination 185(1–3), 517–521 (2005)CrossRefGoogle Scholar
  14. 14.
    Lewis, W.K.: The rate of drying of solid materials, factors influencing the maximum rates of air drying of shelled corn in thin layer. J. Ind. Eng. 5, 427–433, 1949–1959 (1921)CrossRefGoogle Scholar
  15. 15.
    Page, C.: Factors influencing the maximum rates of air drying of shalled corn in thin layer. Unpublished M.S. Thesis, Purdue University, Lafayette, IN (1949)Google Scholar
  16. 16.
    laninié, M.P., Velié, D., Tomas, S., Bilié, M., Bucié, A.: Modeling of drying and rehydration of carrots using peleg’s model. Eur. Food Res. Technol. 221, 446–451 (2005)Google Scholar
  17. 17.
    Yagcioglu, A.: Drying characteristics of laurel leaves under different conditions, Faculty of Agriculture; Cukurova University editor, Adana, Turkey (1998)Google Scholar
  18. 18.
    Henderson, S.: Progress in developing the thin layer drying equation. Trans. Am. Soc. Agric. Eng. 17, 1167–1168 (1947)CrossRefGoogle Scholar
  19. 19.
    Wang, G.Y., Sing, R.P.: Single layer drying equation for rough rice. Am. Soc. Agric. Eng. 78, 3001 (1978)Google Scholar
  20. 20.
    Kassem, A.S.: Comparative studies on thin layer drying models for wheat. In: 13th International Congress on Agricultural Engineering, Morocco, vol. 6 (1998)Google Scholar
  21. 21.
    Karathanos, V.T.: Determination of water content of dried fruits by drying kinetics. J. Food Eng. 39, 337–344 (1999)CrossRefGoogle Scholar
  22. 22.
    Midilli, A., Kucu, H., Yaper, Z.: A new model for single layer drying. Dry. Technol. 20, 1503–1513 (2002)CrossRefGoogle Scholar
  23. 23.
    Togrul, L., Pehlivan, D.: Mathematical modelling of solar drying of apricot in thin layers. J. Food Eng. 55, 209–216 (2003)CrossRefGoogle Scholar
  24. 24.
    Garware, T., Sutar, N., Thorat B.: Drying of tomato using different drying methods: comparison of drying kinetics and rehydration ratio, In: Proceedings of the 16th International drying symposium, Hyderabad, India, pp. 1427–1432 (2008)Google Scholar
  25. 25.
    Idlimam, A., Ethmane Kane, C.S., Kouhila, M.: Single layer drying behaviour of grenade peel in a forced convective solar dryer. Rev. Ener. Renouv. 10(2), 191–203 (2007)Google Scholar
  26. 26.
    Lahsasni, S., Kouhila, M., Mahrouz, M., Jaouhari, J.T.: Drying kinetics of prickly pear fruit (Opuntia ficus indica). J. Food Eng. 61(2), 173–179 (2004)CrossRefGoogle Scholar
  27. 27.
    Yaldiz, O., Ertekin, C.: Thin layer solar drying of some vegetables. Dry. Technol. 19(3–4), 83–97 (2001)Google Scholar
  28. 28.
    Kaymak Ertekin, F.: Drying and rehydrating kinetics of green and red peppers. J. Food Sci. 67(1), 168–175 (2002)CrossRefGoogle Scholar
  29. 29.
    Passamai, V., Sravia, L.: Relationship between a solar drying model of red pepper and the kinetics of pure water evaporation. Dry. Technol. 15(5), 1419–1432 (1997)CrossRefGoogle Scholar
  30. 30.
    Kouhila, M., Kechaou, N., Otmani, M., Fliyou, M., Lahsasni, S.: Experimental study of sorption isotherms and drying kinetics of Moroccan Eucalyptus globulus. Dry. Technol. 20, 2027–2039 (2002)CrossRefGoogle Scholar
  31. 31.
    Belghit, A., Kouhila, M., Boutaleb, B.C.: Experimental Study of Drying Kinetics by Forced Convection of Aromatic Plants. Energy Convers. Manag. 41, 1303–1321 (2000)CrossRefGoogle Scholar
  32. 32.
    Xiao, H.W., Pang, C.L., Wang, L.H., Bai, J.W., Yang, W.X., Gao, Z.J.: Drying kinetics and quality of Monukka seedless grapes dried in an air-impingement jet dryer. Biosyst. Eng. 105, 233–240 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • M. Kouhila
    • 1
    Email author
  • A. Idlimam
    • 1
  • A. Lamharrar
    • 1
  • H. Lamsyehe
    • 1
  • H. Moussaoui
    • 1
  1. 1.Team of Solar Energy and Medicinal Plants, Cadi Ayyad University, High School of Trainee TeachersMarrakechMorocco

Personalised recommendations