Influence of Glass Properties in the Performance of a Solar Cooling Ac-Nh3 Adsorption Machine

  • Hanae El KalkhaEmail author
  • Abelaziz Mimet
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 912)


This work presents the results of the development of a dynamic model aiming to contribute to the design and performance evaluation of an ammonia-activated carbon adsorption solar cooling systems using a sensor with two different types of glass, one normal and other selective. Model takes into account the transient behavior of input variables as solar radiation and ambient temperature and it calculates, according certain initial parameters and a given solar flux, the internal system temperatures, the adsorbed mass and the pressure of the reactor. This allows us to calculate with good accuracy the cycled mass of refrigerant, the quantity of cold produced in the machine and the performance coefficient of solar refrigerating machine. The solar collector used for converting solar energy to heat is a solar flat plate collector. The model is applied to the performance evaluation and the calculation of amount of cold produced of this kind of devices in different locations at Morocco.


Solar energy Adsorption coolin Amount of cold produced Performance coefficient 


  1. 1.
    Dieng, A.O., Wang, R.Z.: Literature review on solar adsorption technologies for ice-making and airconditioning purposes and recent developments in solar technology. Renew. Sustain. Energy Rev. 5, 313–342 (2001)CrossRefGoogle Scholar
  2. 2.
    Boubakri, A., Guilleminot, J.J., Meunier, F.: Adsorptive solar powered ice maker: experiments and model. Sol. Energy 69(3), 249–263 (2000)CrossRefGoogle Scholar
  3. 3.
    Al Mers, A., Mimet, A., Boussouis, M.: Numerical study of heat and mass transfer in a cubical porous medium heated by solar energy “Boubnov-Galerkin method’’. In: Crolet, J.M. (ed.) Computational Methods for Flow and Transport in Porous Media (2000)CrossRefGoogle Scholar
  4. 4.
    El Fadar, A., Mimet, A., Azzabakh, A., Pérez-Garcia, M., Castaing, J.: Study of a new solar adsorption refrigerator powered by a parabolical trough collector. Appl. Therm. Eng. 29(5–6), 1267–1270 (2008)Google Scholar
  5. 5.
    El Fadar, A., Mimet, A., Pérez-Garcia, M.: Modeling and performancesludy of a continuous adsorption refrigeration system driven by parabolical trough solar collector. Sol. Energy 83(6), 850–861 (2008)CrossRefGoogle Scholar
  6. 6.
    Louajari, M., Mimet, A., Ouammi, A.: Study of the effect of finned tube adsorber on the performance of solar driven adsorption cooling machine using activated carbon–ammonia pair. Appl. Energy 88(3), 690–698 (2010)CrossRefGoogle Scholar
  7. 7.
    Louajari, M., Mimet, A., Ouammi, A.: Sustainable development of a solar adsorption cooling machine. Manag. Environ. 21, 589–601 (2010)Google Scholar
  8. 8.
    Al Mers, A., Azzabakh, A., Mimet, A., El Kalkha, H.: Optimal design study of cylindrical finned reactor for solar adsorption cooling machine working with activated carbon–ammonia pair. Appl. Therm. Eng. 26, 1866–1875 (2006)CrossRefGoogle Scholar
  9. 9.
    El Kalkha, H., Ezzarfi, A., Mimet, A., Perez-Garcia, M., Ganaoui, M.: Evaluation of a cold map for a Moroccan climate by a solar adsorption refrigeration machine working with activated carbon–ammonia pair. J. Fluid Dyn. Mater. Process. (2011)Google Scholar
  10. 10.
    Wang, L.W., Wang, R.Z., Oliveira, R.G.: A review on adsorption working pairs for refrigeration. Renew. Sustain. Energy Rev. 13, 518–534 (2009)CrossRefGoogle Scholar
  11. 11.
    Mimet, A.: Etude théorique et expérimentale d’une machine frigorifique à adsorption d’ammoniac sur charbon actif, Thèse de Doctorat, FPMs, Mons, Belgique (1991)Google Scholar
  12. 12.
    Critoph, R.E., Gong, F.: A rapid cycling ice-maker for use in developing countries. In: Proceeding of the 2nd World Renewable Energy Congress, UK (1992)Google Scholar
  13. 13.
    Institut Internationnal du foid, Tables et diagramme pour l’industrie du froid. Propriétés thermodynamiques du R717, Paris (1981)Google Scholar
  14. 14.
    Meunier, F.: Le froid solaire par adsorption, Cahier. AFEDES, no. 5 (1978)Google Scholar
  15. 15.
    Modélisation de l’adsorption par les charbons microporeux: Approches théorique et expérimentale, ’université de Namur, thèse de Doctorat (2002)Google Scholar
  16. 16.
    Ong, K.S.: Thermal performance of solar air heaters: mathematical model and solution procedure. Sol. Energy 55(2), 93–109 (1995)CrossRefGoogle Scholar
  17. 17.
    Meteotest: Meteonorm version 6.1 – handbook (2008).
  18. 18.
    Aggour, M.: Mesures et correlation du rayonnement solaire et des caractéristiques des panneaux photovoltaïques, thése de doctorat, Faculté des sciences, Rabat (1987)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Innovative TechnologiesNational School of Applied SciencesTangierMorocco
  2. 2.Faculty of SciencesUniversity Abdelmalek EssaidiTetouanMorocco

Personalised recommendations