Optimal Power Control Strategy of a PMSG Using T-S Fuzzy Modeling

  • A. BenkadaEmail author
  • H. Chaikhy
  • M. Monkade
  • M. Kaddari
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 912)


This article offers two different method control strategies to have the maximum power from wind turbine (WT) based on the Permanent Magnet Synchronous Generator (PMSG). The first control strategy is composed of standard proportional-integral (PI) regulators. The PI controllers are tuned for a specific operation mode. However, since the system is nonlinear, for different operating conditions, the values of the PI parameters may not be optimal. The second approach presents a new fuzzy tracking control method using Takagi-Sugeno (T-S) fuzzy of the WT, to achieve improved speed performance under different operating points. Finally, simulation results are provided to demonstrate the validity and the effectiveness of the proposed method.


Maximum power Wind turbine PMSM PI controller Takagi-Sugeno fuzzy 


  1. 1.
    Benkada, A., Chaikhy, H., Monkade, M.: MPPT control for wind energy conversion system based on a T-S Fuzzy, vol. 9, no. 2 (2018)Google Scholar
  2. 2.
    Luo, F., Meng, K., Dong, Z.Y., Zheng, Y., Chen, Y., Wong, K.P.: IEEE Trans. Sustain. Energy 6, 253–262 (2015)CrossRefGoogle Scholar
  3. 3.
    Errami, Y., Ouassaid, M., Maaroufi, M.: Int. J. Electr. Power Energy Syst. 68, 180–194 (2015)CrossRefGoogle Scholar
  4. 4.
    Harrabi, N., Souissi, M., Aitouche, A., Chaabane, M.: Intelligent control of wind conversion system based on PMSG using T-S fuzzy scheme. Int. J. Renew. Energy Res. IJRER 5(4), 952–960 (2015)Google Scholar
  5. 5.
    Peftitsis, D., Adamidis, G., Fyntanakis, A.: Modulation of three phase rectifier in connection with PMSG for maximum energy extraction. In: Proceedings of the 13th European Conference on Power Electronics and Applications, pp. 1–10, Barcelona, Spain (2009)Google Scholar
  6. 6.
    Allouche, M., Souissi, M., Chaabane, M., Mehdi, D.: Takagi-Sugeno fuzzy control of induction motor. Int. J. Electr. Comput. Eng. 8, 1263–1269 (2010). World Academy of Science, Engineering and TechnologyGoogle Scholar
  7. 7.
    Bahraminejad, B., Iranpour, M.R., Esfandiari, E.: Pitch control of wind turbines using IT2FL controller versus T1FL controller. Int. J. Renew. Energy Res. (IJRER) 4(4), 1077 (2014)Google Scholar
  8. 8.
    Anju, M., Rajasekaran, R.: Power system stability enhancement and improvement of LVRT capability of a DFIG based wind power system by using SMES and SFCL. Int. J. Electr. Comput. Eng. (IJECE) 3(5), 618–628 (2013)Google Scholar
  9. 9.
    Narimani, M., Lam, H.K.: Relaxed LMI-based stability conditions for Takagi-Sugeno fuzzy control systems using regional-membership function shape-dependent analysis approach. IEEE Trans. on Fuzzy Syst. 17(5), 1221–1228 (2009)CrossRefGoogle Scholar
  10. 10.
    Errami, Y., Hilal, M., Benchagra, M., Maaroufi, M., Ouassaid, M.: Nonlinear control of MPPT and grid connected for wind power generation systems based on the PMSG. In: International Conference on Multimedia Computing and Systems (ICMCS), pp. 1055–1060, May 2012Google Scholar
  11. 11.
    Lee, D.H., Park, J.B., Joo, Y.H.: A new fuzzy Lyapunov function for relaxed stability condition of continuous-time Takagi-Sugeno fuzzy systems. IEEE Trans. on Fuzzy Syst. 19(4), 785–791 (2011)CrossRefGoogle Scholar
  12. 12.
    Lamnadi, M., et al.: Modeling and control of a doubly-fed induction generator for wind turbine-generator systems. IJPEDS Int. J. Power Electron. Drive Syst. 7(3), 982–995 (2016)CrossRefGoogle Scholar
  13. 13.
    Mena Lopez, H.E.: Maximum power tracking control scheme for wind generator systems. Master Thesis, A&M University, Texas (2007)Google Scholar
  14. 14.
    Narayana, M., Putrus, G.A., Jovanovic, M., Leung, P.S., McDonald, S.: Generic maximum power point tracking controller for small-scale wind turbines. Renew. Energy 44, 72–79 (2012)CrossRefGoogle Scholar
  15. 15.
    Ounnas, D., Ramdani, M., Chenikher, S., Bouktir, T.: A fuzzy tracking control design strategy for wind energy conversion system. In: Proceedings of 4th International Conference on Renewable Energy Research and applications, Palermo, Italy, 22–25 November 2015, pp. 777–782 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • A. Benkada
    • 1
    Email author
  • H. Chaikhy
    • 2
  • M. Monkade
    • 1
  • M. Kaddari
    • 2
  1. 1.Department of PhysicalUniversity Chouaib DoukkaliEl JadidaMorocco
  2. 2.Department of Electrical and EnergeticUniversity Chouaib DoukkaliEl JadidaMorocco

Personalised recommendations