Prediction of Time Series of Photovoltaic Energy Production Using Artificial Neural Networks

  • A. ElamimEmail author
  • B. Hartiti
  • A. Barhdadi
  • A. Haibaoui
  • A. Lfakir
  • P. Thevenin
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 912)


An artificial neural network (ANN) model is used for forecasting the power provided by photovoltaic solar panels using feed forward neural network (FFNN) of a photovoltaic installation located in the city of Mohammedia (Morocco). One year of hourly data on solar irradiance, ambient temperature and output PV power were available for this study. For this, different combinations of inputs with different numbers of hidden neurons were considered. To evaluate this model several statistic parameters were used such, as the coefficient of determination (R2), the Root Mean Squared Error (RMSE) and the Mean Absolute Error (MAE). The results of this model, tested on unknown data, showed that the model works well, with determination coefficients lying between 0.98 and 0.998 for sunny days and between 0.82 and 0.96 for cloudy days.


Photovoltaic installation Feed forward neural network Artificial neural network 



The authors would like to thank “Institute for Research in Solar Energy and New Energies (IRESEN)” for the financing of the project PROPRE.MA.


  1. 1.
    Taşçıoğlu, A., Taşkın, O., Vardar, A.: A power case study for monocrystalline and polycrystalline solar panels in bursa city, Turkey. Int. J. Photoenergy 2016, Article ID 7324138, 7 pages (2016). Scholar
  2. 2.
    Atwater, M.A., Ball, J.T.: A numerical solar radiation model based on standard meteorological observations. SolarEnergy 21, 163–170 (1978)Google Scholar
  3. 3.
    Loutfi, H., Bernatchou, A., Raoui, Y., Tadili, R.: Learning processes to predict the hourly global, direct, and diffuse solar irradiance from daily global radiation with artificial neural networks. Int. J. Photoenergy 2017, Article ID 4025283, 13 pages (2017)Google Scholar
  4. 4.
    Sozen, A., Arcaklıoglu, E.: Solar potential in Turkey. Appl. Energy 80(1), 35–45 (2005)CrossRefGoogle Scholar
  5. 5.
    Ulbricht, R., Fischer, U., Lehner, W., Donker, H.: First steps towards a systematical optimized strategy for solar energy supply forecasting. In: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECMLPKDD (2013)Google Scholar
  6. 6.
    Mellit, A., Pavan, A.M.: A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid connected PV plant at Trieste, Italy. Sol. Energy 84(5), 807–821 (2010)CrossRefGoogle Scholar
  7. 7.
    Monteiro, C., Fernandez-Jimenez, L.A., Ramirez-Rosado, I.J., Munoz-Jimenez, A., Lara-Santillan, P.M.: Short-term forecasting models for photovoltaic plants: analytical versus soft-computing techniques. Math. Probl. Eng. 9 (2013)Google Scholar
  8. 8.
    Cornaro, C., Pierro, M., Bucci, F.: Master optimization process based on neural networks ensemble for 24-h solar irradiance forecast. Sol. Energy 111, 297–312 (2015)CrossRefGoogle Scholar
  9. 9.
    Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., Martinez-de-Pison, F., AntonanzasTorres, F.: Review of photovoltaic power forecasting. Sol. Energy 136, 78–111 (2016)CrossRefGoogle Scholar
  10. 10.
    Dolara, A., Lazaroiu, G.C., Leva, S., Manzolini, G.: Experimental investigation of partial shading scenarios on PV (photovoltaic) modules. Energy 55, 466–475 (2013)CrossRefGoogle Scholar
  11. 11.
    Kalogirou, S.A., Sencan, A.: Artificial intelligence techniques in solar energy applications. In: Manyala, R.I. (Ed.) Theory and Applications, p. 444, Book (2010)Google Scholar
  12. 12.
    Rehman, S., Mohandes, M.: Artificial neural network estimation of global solar radiation using air temperature and relative humidity. Energy Policy 36, 571–576 (2008)CrossRefGoogle Scholar
  13. 13.
    Mellit, A., Kalogirou, S.A.: Artificial intelligence techniques for photovoltaic application: a review. Prog. Energy Combust. Sci. 34, 574–632 (2008)CrossRefGoogle Scholar
  14. 14.
    Simonov, M., Mussetta, M., Grimaccia, F., Leva, S., Zich, R.: Artificial intelligence forecast of PV plant production for integration in smart energy systems Int. Rev. Electr. Eng. 7(1), 3454–3460 (2012)Google Scholar
  15. 15.
    Dolara, A., Grimaccia, F., Leva, S., Mussetta, M., Ogliari, E.: A physical hybrid artificial neural network for short term forecasting of PV plant power output Energies 8(2), 1138–1153 (2015)CrossRefGoogle Scholar
  16. 16.
    Leva, S., Dolara, A., Grimaccia, F., Mussetta, M., Ogliari, E.: Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power. Math. Comput. Simul. 131, 88–100 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Mellit, A., Pavan, A.M.: Energy conversion and management 51, 2431–2441 (2010)CrossRefGoogle Scholar
  18. 18.
    The MathWorks, “MATLAB” (2017).
  19. 19.
    Sfetsos, A., Coonick, A.H.: Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques. Sol. Energy 68(2), 169–178 (2000)CrossRefGoogle Scholar
  20. 20.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • A. Elamim
    • 1
    Email author
  • B. Hartiti
    • 1
    • 2
  • A. Barhdadi
    • 3
  • A. Haibaoui
    • 1
    • 4
  • A. Lfakir
    • 5
  • P. Thevenin
    • 6
  1. 1.ERDYS Laboratory, MEEM & DD GroupHassan II University of CasablancaMohammediaMorocco
  2. 2.ICTP, UNESCOTriesteItaly
  3. 3.Energy Research CentreEcole Normale Supérieure (ENS) Mohammed V UniversityRabatMorocco
  4. 4.LIMAT Laboratory, Department of PhysicsUniversity Hassan II FSBCasablancaMorocco
  5. 5.University Sultan Moulay Slimane FSTBBeni MelallMorocco
  6. 6.LMOPS Laboratory, Department of PhysicsUniversity of Lorraine MetzLorraineFrance

Personalised recommendations