Lyapunov Function Based Control for Grid-Interfacing Solar Photovoltaic System with Constant Voltage MPPT Technique

  • Kawtar MoutakiEmail author
  • Halima Ikaouassen
  • Abderraouf Raddaoui
  • Miloud Rezkallah
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 912)


In this paper nonlinear control design to obtain high performance from solar PV system using three-phase grid-connected LCL-filtered voltage source inverter is presented. The grid-connected system is modeled in the synchronously rotating frame. For perfect synchronization of solar photovoltaic and clean power injection to the grid new control based on Lyapunov function is used. Lyapunov function based control is derived from the Lyapunov’s direct method which guarantees the global stability of the closed-loop system. The output PV voltage is used as DC link voltage which will be maintained at its reference value using constant voltage MPPT tracking method. In the proposed control strategy, the measurement of inverter currents, capacitor voltages and grid currents are essential. The generation of reference functions in the d- and q-components can be achieved by using the reference d-component grid current. The performance of the proposed scheme and its developed control strategy, are validate using MATLAB Simulink.


Single-stage inverter Photvoltaic system Lyapunov function based control 


  1. 1.
    Lena, G.: Rural Electrification with PV Hybrid Systems. International Energy Agency, pp. 7–10, July 2013Google Scholar
  2. 2.
    Darwish, A., Holliday, D., Ahmed, S., Massoud, A.M., Williams, B.W.: A single-stage three-phase inverter based on Cuk converters for PV applications. IEEE J. Emerg. Sel. Top. Power Electron. 2, 797–807 (2014)CrossRefGoogle Scholar
  3. 3.
    Agarwal, R.K., Hussain, I., Singh, B.: Three-phase single-stage grid tied solar PV ECS using PLL-less fast CTF control technique. IET Power Electron. 10, 178–188 (2017)CrossRefGoogle Scholar
  4. 4.
    Teodorescu, R., Blaabjerg, F., Liserre, M., Loh, P.C.: Proportional-resonant controllers and filters for grid-connected voltage-source converters. IEE Proc. Electr. Power Appl. 153, 750–762 (2006)CrossRefGoogle Scholar
  5. 5.
    Blaabjerg, F., Teodorescu, R., Liserre, M., Timbus, A.V.: Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Industr. Electron. 53, 1398–1409 (2006)CrossRefGoogle Scholar
  6. 6.
    Leyva, R., Cid-Pastor, A., Alonso, C., Queinnec, I., Tarbouriech, S., Martinez-Salamero, L.: Passivity-based integral control of a boost converter for large-signal stability. IEE Proc. Control Theory Appl. 153, 139–146 (2006)CrossRefGoogle Scholar
  7. 7.
    Sanders, S.R., Verghese, G.C.: Lyapunov-based control for switched power converters. In: 21st Annual IEEE Conference on Power Electronics Specialists, pp. 51–58 (1990)Google Scholar
  8. 8.
    Komurcugil, H., Kukrer, O.: A new control strategy for single-phase shunt active power filters using a Lyapunov function. IEEE Trans. Industr. Electron. 53, 305–312 (2005)CrossRefGoogle Scholar
  9. 9.
    Komurcugil, H., Kukrer, O.: Lyapunov-based control for three-phase PWM AC/DC voltage-source converters. IEEE Trans. Power Electron. 13, 801–813 (1998)CrossRefGoogle Scholar
  10. 10.
    Meza, C., Biel, D., Jeltsema, D., Scherpen, J.M.A.: Lyapunov-based control scheme for single-phase grid-connected PV central inverters. IEEE Trans. Control Syst. Technol. 20, 520–529 (2012)CrossRefGoogle Scholar
  11. 11.
    Komurcugil, H., Altin, N., Ozdemir, S., Sefa, I.: Lyapunov-function and proportional-resonant-based control strategy for single-phase grid-connected VSI with LCL filter. IEEE Trans. Industr. Electron. 63, 2838–2849 (2016)CrossRefGoogle Scholar
  12. 12.
    Campanhol, L.B.G., da Silva, S.A.O., Goedtel, A.: Application of shunt active power filter for harmonic reduction and reactive power compensation in three-phase four-wire systems. IET Power Electron. 7, 2825–2836 (2014)CrossRefGoogle Scholar
  13. 13.
    Ahmed, K.H., Finney, S.J., Williams, B.W.: Passive filter design for three-phase inverter interfacing in distributed generation. In: 2007 Compatibility in Power Electronics, pp. 1–9 (2007)Google Scholar
  14. 14.
    Zheng, X., Xiao, L., Lei, Y., Wang, Z.: Optimization of LCL filter based on closed-loop total harmonic distortion calculation model of the grid-connected inverter. IET Power Electron. 8, 860–868 (2015)CrossRefGoogle Scholar
  15. 15.
    Xu, J., Xie, S., Tang, T.: Improved control strategy with grid-voltage feed forward for LCL-filter-based inverter connected to weak grid. IET Power Electron. 7, 2660–2671 (2014)CrossRefGoogle Scholar
  16. 16.
    Balasubramanian, A.K., John, V.: Analysis and design of split-capacitor resistive inductive passive damping for LCL filters in grid-connected inverters. IET Power Electron. 6, 1822–1832 (2013)CrossRefGoogle Scholar
  17. 17.
    Liu, Q., Peng, L., Kang, Y., Tang, S., Wu, D., Qi, Y.: A novel design and optimization method of an LCL filter for a shunt active power filter. IEEE Trans. Industr. Electron. 61, 4000–4010 (2014)CrossRefGoogle Scholar
  18. 18.
    Hatua, K., Jain, A.K., Banerjee, D., Ranganathan, V.T.: Active damping of output LC filter resonance for vector-controlled VSI-fed AC motor drives. IEEE Trans. Industr. Electron. 59, 334–342 (2012)CrossRefGoogle Scholar
  19. 19.
    Reznik, A., Simões, M.G., Al-Durra, A., Muyeen, S.M.: LCL filter design and performance analysis for grid-interconnected systems. IEEE Trans. Ind. Appl. 50, 1225–1232 (2014)CrossRefGoogle Scholar
  20. 20.
    Sen, S., Yenduri, K., Sensarma, P.: Step-by-step design and control of LCL filter based three phase grid-connected inverter. In: 2014 IEEE International Conference on Industrial Technology (ICIT), pp. 503–508 (2014)Google Scholar
  21. 21.
    Tang, Y., Yao, W., Loh, P.C., Blaabjerg, F.: Design of LCL filters with LCL resonance frequencies beyond the Nyquist frequency for grid-connected converters. IEEE J. Emerg. Sel. Top. Power Electron. 4, 3–14 (2016)CrossRefGoogle Scholar
  22. 22.
    Dong, D., Wen, B., Boroyevich, D., Mattavelli, P., Xue, Y.: Analysis of phase-locked loop low-frequency stability in three-phase grid-connected power converters considering impedance interactions. IEEE Trans. Industr. Electron. 62, 310–321 (2015)CrossRefGoogle Scholar
  23. 23.
    Cheng, P., Nian, H.: Direct power control of voltage source inverter in a virtual synchronous reference frame during frequency variation and network unbalance. IET Power Electron. 9, 502–511 (2016)CrossRefGoogle Scholar
  24. 24.
    Se-Kyo, C.: A phase tracking system for three phase utility interface inverters. IEEE Trans. Power Electron. 15, 431–438 (2000)CrossRefGoogle Scholar
  25. 25.
    Qahouq, J.A.A., Jiang, Y.: Distributed photovoltaic solar system architecture with single-power inductor single-power converter and single-sensor single maximum power point tracking controller. IET Power Electron. 7, 2600–2609 (2014)CrossRefGoogle Scholar
  26. 26.
    Zainuri, M.A.A.M., Radzi, M.A.M., Soh, A.C., Rahim, N.A.: Development of adaptive perturb and observe-fuzzy control maximum power point tracking for photovoltaic boost dc-dc converter. IET Renew. Power Gener. 8, 183–194 (2014)CrossRefGoogle Scholar
  27. 27.
    de Oliveira, F.M., da Silva, S.A.O., Durand, F.R., Sampaio, L.P., Bacon, V.D., Campanhol, L.B.G.: Grid-tied photovoltaic system based on PSO MPPT technique with active power line conditioning. IET Power Electron. 9, 1180–1191 (2016)CrossRefGoogle Scholar
  28. 28.
    Rezkallah, M., Sharma, S.K., Chandra, A., Singh, B., Rousse, D.R.: Lyapunov function and sliding mode control approach for the solar-PV grid interface system. IEEE Trans. Industr. Electron. 64, 785–795 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kawtar Moutaki
    • 1
    Email author
  • Halima Ikaouassen
    • 1
  • Abderraouf Raddaoui
    • 1
  • Miloud Rezkallah
    • 2
  1. 1.University Mohammed V in Rabat, MEAT, Ecole Supérieure de Technologie SaléSaléMorocco
  2. 2.Electrical Engineering DepartmentETSMontréalCanada

Personalised recommendations