Raman Analysis of Graphene/PANI Nanocomposites for Photovoltaic

  • Mourad BoutahirEmail author
  • Jamal Chenouf
  • Oussama Boutahir
  • Abdelhai Rahmani
  • Hassane Chadli
  • Abdelali Rahmani
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 912)


The nanocomposites based on graphene are single- or few-layer platelets that can be produced in bulk quantities by the in-situ polymerization method. Indeed, graphene is firstly added to a solution of the monomer. The polymerization is initiated either by heat or radiation. With this technique, a variety of polymeric nanocomposites have been prepared using the different types of graphene based nanofillers. Solution mixing techniques have been shown to represent the most effective for the dispersion of graphene nanosheets in polymers, in order to manufacture new high nanocomposite systems performance. In this experimental work, we report the synthesis and characterisation using Raman spectrometer of PANI and graphene/PANI. We study the vibrational properties of polyaniline (PANI) and graphene/PANI. We find a Charges/Energy Transfer in these promising materials, the graphene/PANI nanocomposites.


PANI Graphene Raman spectrometer 


  1. 1.
    Sariciftci, N.S.: Plastic photovoltaic devices. Mater. Today 7(9), 36–40 (2004)CrossRefGoogle Scholar
  2. 2.
    Günes, S., Neugebauer, H., Sariciftci, N.S.: Conjugated polymer based organic solar cells. Chem. Rev. 107, 1324–1338 (2007)CrossRefGoogle Scholar
  3. 3.
    Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J.: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995)CrossRefGoogle Scholar
  4. 4.
    Zhang, S., Ye, L., Hou, J.: Breaking the 10% efficiency barrier in organic photovoltaics: morphology and device optimization of well-known PBDTTT polymers. Adv. Energy Mater. 6, 1502529–1502549 (2016)CrossRefGoogle Scholar
  5. 5.
    Zhao, W., Li, S., Yao, H., Zhang, S., Zhang, Y., Yang, B., Hou, J.: Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 139(21), 7148–7151 (2017)CrossRefGoogle Scholar
  6. 6.
    Kymakis, E., Amaratunga, G.A.J.: Carbon nanotubes as electron acceptors in polymeric photovoltaics. Rev. Adv. Mater. Sci. 10, 300–305 (2005)Google Scholar
  7. 7.
    Hyunwoo, K., Abdala, A.A., Macosko, C.W.: Graphene/polymer nanocomposites. Macromolecules 43(16), 6515–6530 (2010)CrossRefGoogle Scholar
  8. 8.
    Wang, Y., Yang, S., Wang, Q., Ta, T., Shi, Y., Hu, J., Wang, H., Zou, B.: The role of surfactant-treated graphene oxide in polymer solar cells: Mobility study. Org. Electron. 53, 303–307 (2018)CrossRefGoogle Scholar
  9. 9.
    Bhadra, S., Khastgir, D., Singha, N.K., Lee, J.H.: Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 34(8), 783–810 (2009)CrossRefGoogle Scholar
  10. 10.
    Unsworth, J., Lunn, B.A., Innis, P.C., Jin, Z., Kaynak, A., Booth, N.G.: Technical review: conducting polymer electronics. J. Intel. Mat. Syst. Str. 3, 380–395 (1992)CrossRefGoogle Scholar
  11. 11.
    Schoch Jr., K.F.: Update on electrically conductive polymers and their applications. IEEE Electr. Insulat. Mag. 10, 29–32 (1994)CrossRefGoogle Scholar
  12. 12.
    Bhadra, S., Chattopadhyay, S., Singha, N.K., Khastgir, D.: Improvement of conductivity of electrochemically synthesized polyaniline. J. Appl. Polym. Sci. 108, 57–64 (2008)CrossRefGoogle Scholar
  13. 13.
    Bhadra, S., Singha, N.K., Khastgir, D.: Polyaniline by new miniemulsion polymerization and the effect of reducing agent on conductivity. Synth. Met. 156, 1148–1154 (2006)CrossRefGoogle Scholar
  14. 14.
    Roe, M., Ginder, J., Wigen, P., Epstein, A., Angelopoulos, M., MacDiarmid, A.: 1988, Photoexcitation of polarons and molecular excitons in emeraldine base. Phys. Rev. Lett. 60(26), 2789 (1988)CrossRefGoogle Scholar
  15. 15.
    Kutanis, S., Karaksla, M., Akbulut, U., Sacak, M.: The Conductive polyaniline/poly (ethylene terephthalate) composite fabrics. Compos. Part A Appl. Sci. Manuf. 38(2), 609–614 (2007)CrossRefGoogle Scholar
  16. 16.
    Juvin, P., Hasik, M., Fraysse, J., Plans, J., Pron, A.., Kulszewicz-Bajer, I.: Conductive blends of polyaniline with plasticized poly (methyl methacrylate). J. Appl. Polym. Sci. 74(3), 471–479 (1999)CrossRefGoogle Scholar
  17. 17.
    Falco, E.H.L., Petrov, D.V., De Azevdo, W.M.: Polyaniline-poly (vinylalco-hol) composite: spectroscopic characterization and diffraction grating recording. Mol. Cryst. Liq. Cryst. 374(1), 173–178 (2002)CrossRefGoogle Scholar
  18. 18.
    Anand, J., Palaniappan, S., Sathyanarayana, D.: Conducting polyaniline blends and composites. Prog. Polym. Sci. 23(6), 993–1018 (1998)CrossRefGoogle Scholar
  19. 19.
    Mo, T.C., Wang, H.W., Chen, S.Y., Yeh, Y.C.: Synthesis and dielectric properties of polyaniline/titanium dioxide nanocomposites. Ceram. Int. 34(7), 1767–1771 (2008)CrossRefGoogle Scholar
  20. 20.
    Mirmohseni, A., Oladegaragoze, A.: Anti-corrosive properties of polyaniline coating on iron. Synth. Met. 114(2), 105–108 (2000)CrossRefGoogle Scholar
  21. 21.
    Liu, Z., Zhou, J., Xue, H., Shen, L., Zang, H., Chen, W.: Polyaniline/TiO2 solar cells. Synth. Met. 156(9), 721–723 (2006)CrossRefGoogle Scholar
  22. 22.
    Liu, Z., Guo, W., Fu, D., Chen, W.: p-n heterojunction diodes made by assembly of ITO/nano-crystalline TiO2/polyaniline/ITO. Synth. Met. 156(5), 414–416 (2006)CrossRefGoogle Scholar
  23. 23.
    Amaechi, C., Asogwa, P., Ekwealor, A., Osuji, R., Maaza, M., Ezema, F.: Fabrication and capacitive characteristics of conjugated polymer composite p-polyaniline/n-WO2 heterojunction. Appl. Phys. A 117(3), 1589–1598 (2014)CrossRefGoogle Scholar
  24. 24.
    Elnaggar, E.M., Kabel, K.I., Farag, A.A., Abdalrhman, G., Al-Gamal, A.G.: Comparative study on doping of polyaniline with graphene and multi-walled carbon nanotubes. J. Nanostruct. Chem. 7, 75–83 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mourad Boutahir
    • 1
    Email author
  • Jamal Chenouf
    • 1
  • Oussama Boutahir
    • 1
  • Abdelhai Rahmani
    • 1
  • Hassane Chadli
    • 1
    • 2
  • Abdelali Rahmani
    • 1
  1. 1.Advanced Material and Applications Laboratory (LEM2A)University Moulay Ismail, FSM-ESTM-FPEMeknesMorocco
  2. 2.Equipe Physique Informatique et Modélisation des Procédés, Ecole Superieur de TechnologieKhènifraMorocco

Personalised recommendations