Skip to main content

Grain Boundary Engineering for Thermal Conductivity Reduction in Bulk Nanostructured Thermoelectric Materials

  • Chapter
  • First Online:
Book cover Novel Thermoelectric Materials and Device Design Concepts

Abstract

Bulk thermoelectric (TE) materials have recently seen significant enhancement in the measured dimensionless figure of merit ZT by nanostructuring the constituent materials. This is usually attributed to phonon scattering at grain boundaries, with increased grain boundary density leading to significant suppression of phonon propagation from one grain to the next while maintaining electron transport. However, to date, the reduction in thermal conductivity has been observed solely at the bulk scale. Controlling and understanding morphology and size distribution of the nanostructured grains remain a challenge. There is general lack of experimental validation of local effects of grain boundary scattering at micro- and nanoscale. This chapter discusses two strategies by which we may tune the grain size and quality of the local domains of Bi2Te3-based materials: shockwave consolidation and AC electric field-assisted sintering technology (FAST) via Gleeble system. These two strategies give a wide range of mean grain boundary size, from less than 100 nm to more than 500 nm. We use a multi-scale approach to measure the thermal conductivity of these samples on macroscopic/bulk scale and mesoscopic/deep submicron scale. To determine thermal conductivity over this wide dimensional scale, we leverage the ultrahigh-resolution capabilities offered by scanning thermal microscopy, the microscale capabilities of frequency-domain thermoreflectance, and the bulk-scale one-dimensional (1D) steady-state method. Despite local variations, the values on average agree well with one another, and added local thermal resolution may offer insight to future efforts to better tune materials for optimal TE performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)

    Article  CAS  Google Scholar 

  2. R.J. Mehta, Y. Zhang, C. Karthik, B. Singh, R.W. Siegel, T. Borca-Tasciuc, et al., A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nat. Mater. 11, 233–240 (2012)

    Article  CAS  Google Scholar 

  3. J. Maiz, M. Muñoz Rojo, B. Abad, A.A. Wilson, A. Nogales, D.-A. Borca-Tasciuc, et al., Enhancement of thermoelectric efficiency of doped PCDTBT polymer films. RSC Adv. 5, 66687–66694 (2015)

    Article  CAS  Google Scholar 

  4. T. Cardinal, M. Kwan, T. Borca-Tasciuc, G. Ramanath, Multifold electrical conductance enhancements at metal-bismuth telluride interfaces modified using an organosilane monolayer. ACS Appl. Mater. Interfaces 9, 2001–2005 (2017)

    Article  CAS  Google Scholar 

  5. E.S. Choi, J.S. Brooks, D.L. Eaton, M.S. Al-Haik, M.Y. Hussaini, H. Garmestani, et al., Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J. Appl. Phys. 94, 6034–6039 (2003)

    Article  CAS  Google Scholar 

  6. B. Zhang, J. Sun, H.E. Katz, F. Fang, R.L. Opila, Promising thermoelectric properties of commercial PEDOT:PSS materials and their Bi2Te3 powder composites. ACS Appl. Mater. Interfaces 2, 3170–3178 (2010)

    Article  CAS  Google Scholar 

  7. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, et al., High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008)

    Article  CAS  Google Scholar 

  8. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, et al., New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007)

    Article  CAS  Google Scholar 

  9. H.S. Kim, W. Liu, G. Chen, C.W. Chu, Z. Ren, Relationship between thermoelectric figure of merit and energy conversion efficiency. Proc. Natl. Acad. Sci. U. S. A. 112, 8205–8210 (2015)

    Article  CAS  Google Scholar 

  10. N.S. Prasad, P. Taylor, D. Nemir, Shockwave consolidation of nanostructured thermoelectric materials, in SPIE Nanophotonics and Macrophotonics for Space Environments VIII (2014), p. 92260J

    Google Scholar 

  11. N. Prasad, D. Nemir, J. Beck, J. Maddux, P. Taylor, Inhomogeneous Thermoelectric materials: improving overall zT by localized property variations, in Proc. SPIE 9493, Energy Harvesting and Storage: Materials, Devices and Applications VI (Baltimore, MD, 2015), p. 949305

    Google Scholar 

  12. P.E. Hopkins, Thermal transport across solid interfaces with nanoscale imperfections: effects of roughness, disorder, dislocations, and bonding on thermal boundary conductance. ISRN Mech. Eng. 2013, 1–19 (2013)

    Article  Google Scholar 

  13. M.E. DeCoster, K.E. Meyer, B.D. Piercy, J.T. Gaskins, B.F. Donovan, A. Giri, et al., Density and size effects on the thermal conductivity of atomic layer deposited TiO 2 and Al 2 O 3 thin films. Thin Solid Films 650, 71–77 (2018)

    Article  CAS  Google Scholar 

  14. H. Chae, G. Hwang, O. Kwon, Fabrication of scanning thermal microscope probe with ultra-thin oxide tip and demonstration of its enhanced performance. Ultramicroscopy 171, 195–203 (2016)

    Article  CAS  Google Scholar 

  15. J. Yang, C. Maragliano, and A. J. Schmidt, "Thermal property microscopy with frequency domain thermoreflectance," Rev. Sci. Instrum., vol. 84, p. 104904, 2013

    Article  Google Scholar 

  16. Y. Zhang, C.L. Hapenciuc, E.E. Castillo, T. Borca-Tasciuc, R.J. Mehta, C. Karthik, et al., A microprobe technique for simultaneously measuring thermal conductivity and Seebeck coefficient of thin films. Appl. Phys. Lett. 96, 062107 (2010)

    Article  Google Scholar 

  17. Y. Zhang, E.E. Castillo, R.J. Mehta, G. Ramanath, T. Borca-Tasciuc, A noncontact thermal microprobe for local thermal conductivity measurement. Rev. Sci. Instrum. 82, 024902 (2011)

    Article  Google Scholar 

  18. A.A. Wilson, T. Borca-Tasciuc, Quantifying non-contact tip-sample thermal exchange parameters for accurate scanning thermal microscopy with heated microprobes. Rev. Sci. Instrum. 88, 074903 (2017)

    Article  Google Scholar 

  19. A.A. Wilson, M. Munoz Rojo, B. Abad, J.A. Perez, J. Maiz, J. Schomacker, et al., Thermal conductivity measurements of high and low thermal conductivity films using a scanning hot probe method in the 3omega mode and novel calibration strategies. Nanoscale 7, 15404–15412 (2015)

    Article  CAS  Google Scholar 

  20. A.A. Wilson, T. Borca-Tasciuc, M. Martín-González, O. Caballero-Calero, M. Muñoz Rojo, in Scanning Hot Probe Technique for Thermoelectric Characterization of Films. Materials Research Society Fall Meeting (Boston, MA, 2013)

    Google Scholar 

  21. A.A. Wilson, M. Muñoz Rojo, B. Abad, M. Martin-Gonzalez, D. Borca-Tasciuc, T. Borca-Tasciuc, Investigating thermal exchange parameters between a heated microprobe and sample, in International Conference of Thermoelectrics/European Conference of Thermoelectrics (Dresden, 2015)

    Google Scholar 

  22. A.A. Wilson, Analysis of non-contact and contact probe-to-sample thermal exchange for quantitative measurements of thin film and nanostructure thermal conductivity by the scanning hot probe method, Doctor of Philosophy Dissertation, Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, 2017

    Google Scholar 

  23. K. Kim, J. Chung, J. Won, O. Kwon, J.S. Lee, S.H. Park, et al., Quantitative scanning thermal microscopy using double scan technique. Appl. Phys. Lett. 93, 203115 (2008)

    Article  Google Scholar 

  24. S. Lefèvre, J.B. Saulnier, C. Fuentes, S. Volz, Probe calibration of the scanning thermal microscope in the AC mode. Superlattice. Microst. 35, 283–288 (2004)

    Article  Google Scholar 

  25. S. Lefèvre, S. Volz, J.-B. Saulnier, C. Fuentes, N. Trannoy, Thermal conductivity calibration for hot wire based dc scanning thermal microscopy. Rev. Sci. Instrum. 74, 2418–2423 (2003)

    Article  Google Scholar 

  26. E. Puyoo, S. Grauby, J.M. Rampnoux, E. Rouviere, S. Dilhaire, Thermal exchange radius measurement: application to nanowire thermal imaging. Rev. Sci. Instrum. 81, 073701 (2010)

    Article  Google Scholar 

  27. E. Puyoo, S. Grauby, J.-M. Rampnoux, E. Rouvière, S. Dilhaire, Scanning thermal microscopy of individual silicon nanowires. J. Appl. Phys. 109, 024302 (2011)

    Article  Google Scholar 

  28. M. Bartosik, L. Kormos, L. Flajsman, R. Kalousek, J. Mach, Z. Liskova, et al., Nanometer-sized water bridge and pull-off force in AFM at different relative humidities: reproducibility measurement and model based on surface tension change. J. Phys. Chem. B 121, 610–619 (2017)

    Article  CAS  Google Scholar 

  29. A.A. Wilson, D.J. Sharar, Temperature-dependent adhesion mechanisms of metal and insulator probe-sample contact pairs, Presented at the 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, CA, 2018

    Google Scholar 

  30. Anasys, SThM installation and operation manual (Calibrating the Probe, Santa Clara, CA, 2013)

    Google Scholar 

  31. J. Juszczyk, A. Kazmierczak-Balata, P. Firek, J. Bodzenta, Measuring thermal conductivity of thin films by scanning thermal microscopy combined with thermal spreading resistance analysis. Ultramicroscopy 175, 81–86 (2017)

    Article  CAS  Google Scholar 

  32. A. A. Wilson, M. Graziano, M. Rivas, D. Baker, and B. Hanrahan, Effective thermal conductivity of iridium oxide nanostructures by a combined non-contact and contact mode scanning hot probe technique, in Electronic and Advanced Materials Conference (Orlando, FL, 2018)

    Google Scholar 

  33. A. Kaźmierczak-Bałata, J. Bodzenta, M. Krzywiecki, J. Juszczyk, J. Szmidt, P. Firek, Application of scanning microscopy to study correlation between thermal properties and morphology of BaTiO3 thin films. Thin Solid Films 545, 217–221 (2013)

    Article  Google Scholar 

  34. J. Juszczyk, M. Wojtol, J. Bodzenta, DC experiments in quantitative scanning thermal microscopy. Int. J. Thermophys. 34, 620–628 (2013)

    Article  CAS  Google Scholar 

  35. B. Abad, D.A. Borca-Tasciuc, M.S. Martin-Gonzalez, Non-contact methods for thermal properties measurement. Renew. Sust. Energ. Rev. 76, 1348–1370 (2017)

    Article  Google Scholar 

  36. A.A. Wilson, T. Borca-Tasciuc, H. Wang, C. Yu, Thermal conductivity of double-wall carbon nanotube-polyaniline composites measured by a non-contact scanning hot probe technique, in IEEE 16th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Orlando, FL, 2017), p. 456

    Google Scholar 

  37. I. Williams, R. Shawyer, Certification Report for a Pyrex Glass Reference Material for Thermal Conductivity between-75° C and 195°C, Commission of the European Communities, 1991

    Google Scholar 

  38. D.M. Rowe, V.S. Shukla, The effect of phonon-grain boundary scattering on the lattice thermal conductivity and thermoelectric conversion efficiency of heavily doped fine-grained, hot-pressed silicon germanium alloy. J. Appl. Phys. 52, 7421–7426 (1981)

    Article  CAS  Google Scholar 

  39. A.J. Schmidt, R. Cheaito, M. Chiesa, A frequency-domain thermoreflectance method for the characterization of thermal properties. Rev. Sci. Instrum. 80, 094901 (2009)

    Article  Google Scholar 

  40. J.P. Feser, J. Liu, D.G. Cahill, Pump-probe measurements of the thermal conductivity tensor for materials lacking in-plane symmetry. Rev. Sci. Instrum. 85, 104903 (2014)

    Article  Google Scholar 

  41. Z. Ge, D.G. Cahill, P.V. Braun, Thermal conductance of hydrophilic and hydrophobic interfaces. Phys. Rev. Lett. 96, 186101 (2006)

    Article  Google Scholar 

  42. P.E. Hopkins, J.R. Serrano, L.M. Phinney, Comparison of thermal conductivity and thermal boundary conductance sensitivities in continuous-wave and ultrashort-pulsed thermoreflectance analyses. Int. J. Thermophys. 31, 2380–2393 (2010)

    Article  CAS  Google Scholar 

  43. J. Yang, E. Ziade, A.J. Schmidt, Uncertainty analysis of thermoreflectance measurements. Rev. Sci. Instrum. 87, 014901 (2016)

    Article  Google Scholar 

  44. R. Franz, G. Wiedemann, Ueber die Wärme-Leitungsfähigkeit der Metalle. Ann. Phys. 165, 497–531 (1853)

    Article  Google Scholar 

  45. G. Chen, P. Hui, Thermal conductivities of evaporated gold films on silicon and glass. Appl. Phys. Lett. 74, 2942–2944 (1999)

    Article  CAS  Google Scholar 

  46. P.J. Taylor, J.R. Maddux, P.N. Uppal, Measurement of thermal conductivity using steady-state isothermal conditions and validation by comparison with thermoelectric device performance. J. Electron. Mater. 41, 2307–2312 (2012)

    Article  CAS  Google Scholar 

  47. P.J. Taylor, A. Wilson, J.R. Maddux, T. Borca-Tasciuc, S.P. Moran, E. Castillo, et al., Novel measurement methods for thermoelectric power generator materials and devices, in Thermoelectrics for Power Generation - A Look at Trends in the Technology, ed. by S. Skipidarov, M. Nikitin, (InTech, Rijeka, 2016), pp. 389–434

    Google Scholar 

  48. P. Taylor, J. Maddux, A.A. Wilson, Evaluation of thermoelectric devices by the slope-efficiency method, ARL Technical Reports, September 2016

    Google Scholar 

  49. C. Miers, A. Marconnet, Uncertainty quantification for a high temperature Z-meter characterization system. Presented at the IEEE 17th intersociety conference on thermal and thermomechanical phenomena in electronic systems, San Diego, CA, 2018

    Google Scholar 

  50. Z. Ouyang, D. Li, Modelling of segmented high-performance thermoelectric generators with effects of thermal radiation, electrical and thermal contact resistances. Sci. Rep. 6, 24123 (2016)

    Article  CAS  Google Scholar 

  51. M. Thesberg, H. Kosina, N. Neophytou, On the Lorenz number of multiband materials. Phys. Rev. B 95, 125206 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam A. Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wilson, A.A., Taylor, P.J., Choi, D.S., Karna, S.P. (2019). Grain Boundary Engineering for Thermal Conductivity Reduction in Bulk Nanostructured Thermoelectric Materials. In: Skipidarov, S., Nikitin, M. (eds) Novel Thermoelectric Materials and Device Design Concepts. Springer, Cham. https://doi.org/10.1007/978-3-030-12057-3_12

Download citation

Publish with us

Policies and ethics