Skip to main content

Air Quality Monitoring Using Deterministic and Statistical Methods

  • Conference paper
  • First Online:
Big Data and Smart Digital Environment (ICBDSDE 2018)

Part of the book series: Studies in Big Data ((SBD,volume 53))

Included in the following conference series:

Abstract

Air quality has been a serious concern amongst policy-makers and the public due to its impacts on humans and environment, it can be one of the reasons for civilization diseases. According to The Health Effects Institute (HEI) [1], over 95% of the world’s population is breathing polluted air, which contributed to the death of 6.1 million people across the world in 2016. Therefore, air pollution has become one of the major causes of death worldwide, ranked number four behind smoking, blood pressure and diet. Thus, an early warning system based on accurate forecasting tools must be implemented to avoid the adverse effects of exposure to major air pollutants. Consequently, it is necessary to obtain reliable analytical information on air quality. in this paper we provide a general overview of the main methods and approaches used in air quality monitoring including statistical and machine learning based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Health Effects Institute. State of Global Air 2018. Special Report. Health Effects Institute, Boston (2018)

    Google Scholar 

  2. Horie, Y., Stern, A.C.: Analysis of Population Exposure to Air Pollution in the New York-New Jersey-Connecticut TriState Region. Report No. EPA-450/3-76-027, U.S. Environmental Protection Agency, Research Triangle Park (1976)

    Google Scholar 

  3. Kelly, F.J., Fussell, J.C.: Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 60, 504–526 (2012)

    Article  Google Scholar 

  4. Hsu, A., Reuben, A., Shindell, D., de Sherbinin, A., Levy, M.: Toward the next generation of air quality monitoring indicators. Atmos. Environ. 80, 561–570 (2013)

    Article  Google Scholar 

  5. Kim, D.S., Lee, K.W., Kim, Y.J.: Characterization of a particle trap impactor. J. Aerosol Sci. 37, 1016–1023 (2006)

    Article  Google Scholar 

  6. Wilson, W.E., Chow, J.C., Claiborn, C., Fusheng, W., Engelbrecht, J., Watson, J.G.: Monitoring of particulate matter outdoors. Chemosphere 49, 1009–1043 (2002)

    Article  Google Scholar 

  7. World Health Organisation (WHO). Burden of disease from air pollution (2014). http://www.who.int/phe/health_topics/outdoorair/databases/FINAL_HAP_AAP_BoD_24March2014.pdf?ua=1. Accessed 18 Oct 2018

  8. Defra. Automatic Urban and Rural Network (AURN) (2014). http://uk-air.defra.gov.uk/networks/network-info?view=aurn. Accessed 02 July 2014

  9. Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., Di Sabatino, S., Bell, M., Norford, L., Britter, R.: The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 75, 199–205 (2015). https://doi.org/10.1016/j.envint.2014.11.019

    Article  Google Scholar 

  10. Snyder, E.G., Watkins, T.H., Solomon, P.A., Thoma, E.D., Williams, R.W., Hagler, G.S.W., Shelow, D., Hindin, D.A., Kilaru, V.J., Preuss, P.W.: The changing paradigm of air pollution monitoring. Environ. Sci. Technol. 47(20), 11369–11377 (2013)

    Article  Google Scholar 

  11. Borghi, F., Spinazzè, A., Rovelli, S., Campagnolo, D., Del Buono, L., Cattaneo, A., Cavallo, D.: Miniaturized monitors for assessment of exposure to air pollutants: a review. Int. J. Environ. Res. Public Health 14(8), 909 (2017)

    Article  Google Scholar 

  12. Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., Di Sabatino, S., Bell, M., Norford, L., Britter, R.: The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 75, 199–205 (2015)

    Article  Google Scholar 

  13. Northcross, A.L., Edwards, R.J., Johnson, M., Wang, Z.-M., Zhu, K., Allen, T., Smith, K.R.: A low-cost particle counter as a realtime fine-particle mass monitor. Environ. Sci.: Processes Impacts 15(2), 433–439 (2013)

    Google Scholar 

  14. Thompson, J.E.: Crowd-sourced air quality studies: a review of the literature & portable sensors. Trends Environ. Anal. Chem. 11, 23–34 (2016)

    Article  Google Scholar 

  15. The European Commission’s Joint Research Center. Measuring air pollution with low-cost sensors Thoughts on the quality of data measured by sensors, pp. 2–3

    Google Scholar 

  16. Cao, T., Thompson, J.E.: Personal monitoring of ozone exposure: a fully portable device for under $150 USD cost. Sens. Actuators B Chem. 224, 936–943 (2016)

    Article  Google Scholar 

  17. Engel-Cox, J., Oanh, N.T.K., van Donkelaar, A., Martin, R.V., Zell, E.: Toward the next generation of air quality monitoring: particulate matter. Atmos. Environ. 80, 584–590 (2013)

    Article  Google Scholar 

  18. https://modis.gsfc.nasa.gov/data/. Accessed 12 Oct 2018

  19. Duncan, B.N., Prados, A.I., Lamsal, L.N., Liu, Y., Streets, D., Gupta, P., Hilsenrath, E., Kahn, R., Nielsen, E.J., Beyersdorf, A., et al.: Satellite data of atmospheric pollution for U.S. air quality applications: examples of applications, summary of data end-user resources, answers to FAQS, and common mistakes to avoid. Atmos. Environ. 94, 647–662 (2014)

    Article  Google Scholar 

  20. Hoff, R., Christopher, S.A.: Remote sensing of particulate matter air pollution from space: have we reached the promised land. J. Air Waste Manage. Assoc. 59, 645–675 (2009). https://doi.org/10.3155/1047-3289.59.6.645

    Article  Google Scholar 

  21. Holben, B.N., Eck, T.F., Slutsker, I., Tanre, D., Buis, J.P., Setzer, A., Vermote, E., Reagan, J.A., Kaufman, Y.J., Nakajima, T., Lavenu, F., Jankowiak, I., Smirnov, A.: AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sen. Environ. 66, 1–16 (1988)

    Article  Google Scholar 

  22. Sathe, Y., Kulkarni, S., Gupta, P., Kaginalkar, A., Islam, S., Gargava, P.: Application of moderate resolution imaging spectroradiometer (MODIS) Aerosol Optical Depth (AOD) and Weather Research Forecasting (WRF) model meteorological data for assessment of fine particulate matter (PM2.5) over India. Atmos. Pollut. Res. (2018). https://doi.org/10.1016/j.apr.2018.08.016

  23. Cobourn, W.G.: An enhanced PM2.5 air quality forecast model based on nonlinear regression and back-trajectory concentrations. Atmos. Environ. 44(25), 3015–3023 (2010)

    Article  Google Scholar 

  24. Song, G., Dai, Q.: A novel double deep ELMs ensemble system for time series. Knowl. Based Syst. 134, 31–49 (2017)

    Article  Google Scholar 

  25. Cai, M., Yin, Y., Xie, M.: Prediction of hourly air pollutant concentrations near urban arterials using artificial neural network approach. Transp. Res. Part D: Transp. Environ. 14(1), 32–41 (2009). https://doi.org/10.1016/j.trd.2008.10.004

    Article  Google Scholar 

  26. Feng, Y., Zhang, W., Sun, D., Zhang, L.: Ozone concentration forecast method based on genetic algorithm optimized back propagation neural networks and support vector machine data classification. Atmos. Environ. 45(11), 1979–1985 (2011). https://doi.org/10.1016/j.atmosenv.2011.01.022

    Article  Google Scholar 

  27. Moazami, S., Noori, R., Amiri, B.J., Yeganeh, B., Partani, S., Safavi, S.: Reliable prediction of carbon monoxide using developed support vector machine. Atmos. Pollut. Res. 7(3), 412–418 (2016). https://doi.org/10.1016/j.apr.2015.10.022

    Article  Google Scholar 

  28. Li, Y., Jiang, P., She, Q., Lin, G.: Research on air pollutant concentration prediction method based on self-adaptive neuro-fuzzy weighted extreme learning machine. Environ. Pollut. 241, 1115–1127 (2018). https://doi.org/10.1016/j.envpol.2018.05.072. (Barking, Essex: 1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noussair Lazrak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lazrak, N., Zahir, J., Mousannif, H. (2019). Air Quality Monitoring Using Deterministic and Statistical Methods. In: Farhaoui, Y., Moussaid, L. (eds) Big Data and Smart Digital Environment. ICBDSDE 2018. Studies in Big Data, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-030-12048-1_39

Download citation

Publish with us

Policies and ethics