Skip to main content

Tactile Internet: New Challenges and Emerging Solutions

  • Conference paper
  • First Online:
  • 1270 Accesses

Part of the book series: Studies in Big Data ((SBD,volume 53))

Abstract

After years of evolutional technology, current occupancies will change and may disappear and new ones will appear due to Haptic Communication. This revolution will affect surgery and healthcare, one’s life style, methods of teaching and learning, the way that it will all keep pace with user concerns. By that time, user will be formerly in Tactile Internet planet. Accordingly, this article will present the global aspect of Tactile Internet (definition, requirement, and challenges). First, a comparative study will be between wireless technologies evolution, to make sure that the 5G is the comfortable candidate to support Tactile Internet. Furthermore, this article is aimed to discover the role of the 5G in this new technology, as well as proposing some solutions sustained by 5G to enable the Tactile Internet revolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fettweis, G.: The tactile internet: applications and challenges. IEEE Veh. Technol. Mag. 9(1), 64–70 (2014)

    Article  Google Scholar 

  2. Dohler, M., Mahmoudi, T., Condolucio, M., Sardis, F.: Internet of skills, where Robotics meets AI, 5G and the tactile internet. In: Plenary Keynote at IEEE ICC 2016, May 2016, pp. 1–5 (2016)

    Google Scholar 

  3. ITU: The tactile, ITU-T Technology Watch Report, August 2014. Elissa, K.: Title of paper if known (unpublished)

    Google Scholar 

  4. Fordet, R., Zhang, M., Mezzavella, M., Dutta, S., Rangan, S., Zorzi, M.: Achieving ultra-low latency in 5G millimeter wave cellular networks. IEEE Commun. Mag. 3, 196–203 (2017)

    Article  Google Scholar 

  5. Simsek, M., Ajiz, A., Dohler, M., Sachs, J., Fettweis, G.: The 5G-enabled tactile internet. IEEE JSAC 34(3), 460–473 (2016)

    Google Scholar 

  6. Van Den Berg, D., Glans, R., De koning, D., Kuipers, F., Lugtenburg, F.: Challenges in haptic communications over the tactile internet. J. IEEE Access 5, 23502–23518 (2017)

    Article  Google Scholar 

  7. Andrews, J.G., et al.: What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1081 (2014)

    Article  Google Scholar 

  8. Hoshi, T., Takahashi, M., Iwamoto, T., Shinoda, H.: Noncontact tactile display based on radiation pressure of airborne ultrasound. IEEE Trans. Haptics 3(3), 155–165 (2010)

    Article  Google Scholar 

  9. Popovski, P.: EU FP7 INFSO-ICT-317669 METIS, D1.1: Scenarios, Requirements and KPIs for 5G Mobile and Wireless System (2013)

    Google Scholar 

  10. ERICSSON Review: 5G radio access. Commun. Technol. J. Since 1924, 1–8, June 2014

    Google Scholar 

  11. Aijiz, A., Dohler, M., Aghvami, A.H., Friderikos, V., Frodigh, M.: Realizing the tactile internet: haptic communications over next generation 5G cellular networks. IEEE Wirel. Commun. 24(2), 82–89 (2017)

    Article  Google Scholar 

  12. Rangan, S., Rappaport, T., Erkip, E.: Millimeter wave cellular wireless networks: potentials and challenges. Proc. IEEE 03, 366–385 (2014)

    Article  Google Scholar 

  13. Gerzaguet, R.: The 5G candidate waveform race: a comparison of complexity and performance. EURASIP J. Wirel. Commun. Netw. 11, 1–14 (2017)

    Google Scholar 

  14. Matias, J., Garay, J., Toledo, N., Unzilla, J., Jacob, E.: Toward an SDN-enabled NFV architecture. IEEE Commun. Mag. 4, 187–193 (2015)

    Article  Google Scholar 

  15. Ordonez-Lucenaet, J., Ameigeiras, P., Lopez, D., Ramos-Munoz, J., Lorca, J., Folgueira, J.: Network slicing for 5G with SDN/NFV: concepts, architectures and challenges. IEEE Commun. Mag. 55(5), 80–87 (2017)

    Article  Google Scholar 

  16. Liu, H., Eldarrat, F., Alqahtani, H., Reznik, A., de Foy, X., Zhang, Y.: Mobile edge cloud system: architectures, challenges, and approaches. IEEE Syst. J. 12(3), 2495–2508 (2017)

    Article  Google Scholar 

  17. Shirazi, S., Gouglidis, A., Farshad, A., Hutchison, D.: The extended cloud: review and analysis of mobile edge computing and fog from a security and resilience perspective. IEEE J. Sel. Areas Commun. 11, 2586–2595 (2017)

    Article  Google Scholar 

  18. Santhi, K.R., Srivastava, V.K., SenthilKumaran, G., Butare, A.: Goals of true broad band’s wireless next wave (4G–5G). In: Proceedings of the IEEE 58th Vehicular Technology Conference, vol. 4, pp. 2317–2321 (2003)

    Google Scholar 

  19. Halonen, T., Romero, J., Melero, J. (eds.): GSM, GPRS and EDGE performance: evolution towards 3G/UMTS. Wiley, New York (2003)

    Google Scholar 

  20. Andrews, J.G., Ghosh, A., Muhamed, R.: Fundamentals of WiMAX. Prentice-Hall, Englewood Cliffs (2007)

    Google Scholar 

  21. Furht, B., Ahson, S.A. (eds.): Long Term Evolution: 3GPP LTE Radio and Cellular Technology, pp. 441–443. CRC Press, Boca Raton (2009). Chapter 12

    Google Scholar 

  22. Sesia, S., Toufik, I., Baker, M. (eds.): LTE: The UMTS Long Term Evolution. Wiley, New York (2009)

    Google Scholar 

  23. Rappaport, T.: Wireless Communications: Principles and Practice. Prentice-Hall, Englewood Cliffs (1996)

    MATH  Google Scholar 

  24. Perahia, E., Stacey, R.: Next Generation Wireless LANs: Throughput, Robustness, and Reliability in 802.11n. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  25. Ong, E.H., Kneckt, J., Alanen, O., Chang, Z., Huovinen, T., Nihtila, T.: IEEE 802.11ac: enhancements for very high throughput WLANs. In: Proceedings of the IEEE 22nd Personal Indoor Mobile Radio Communication, pp. 849–853 (2011)

    Google Scholar 

  26. Perahia, E., Gong, M.X.: Gigabit wireless LANs: an overview of IEEE 802.11ac and 802.11ad. ACM SIGMOBILE Mobile Comput. Commun. Rev. 15(3), 23–33 (2011)

    Article  Google Scholar 

  27. Perahia, E., Cordeiro, C., Park, M., Yang, L.: IEEE 802.11ad: defining the next generation multi-Gbps Wi-Fi. In: Proceedings of the 7th IEEE Consumer Communication Networking Conference, pp. 1–5 (2010)

    Google Scholar 

  28. Flores, A.B., Guerra, R., Knightly, E.W., Ecclesine, P., Pandey, S.: IEEE 802.11af: a standard for TV white space spectrum sharing. IEEE Commun. Mag. 51(10), 92–100 (2013)

    Article  Google Scholar 

  29. Gutierrez, F., Agarwal, S., Parrish, K., Rappaport, T.S.: On-chip integrated antenna structures in CMOS for 60 GHz WPAN systems. IEEE J. Sel. Areas Commun. 27(8), 1367–1378 (2009)

    Article  Google Scholar 

  30. Rappaport, T.S., Ben-Dor, E., Murdock, J. N., Qiao, Y.: 38 GHz and 60 GHz angle-dependent propagation for cellular & peer-to-peer wireless communications. In: Proceedings of IEEE International Conference on Communications, pp. 4568–4573 (2012)

    Google Scholar 

  31. Rappaport, T.S., Murdock, J.N., Gutierrez, F.: State of the art in 60-GHz integrated circuits and systems for wireless communications. Proc. IEEE 99(8), 1390–1436 (2011)

    Article  Google Scholar 

  32. Larsson, E.G., Tufvesson, F., Edfors, O., Marzetta, T.L.: Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014). http://arxiv.org/pdf/1304.6690v1.pdf

    Article  Google Scholar 

  33. Nam, J., Ahn, J.-Y., Adhikary, A., Caire, G.: Joint spatial division and multiplexing: realizing massive MIMO gains with limited channel state information. In: Proceedings of the IEEE 46th Annual Conference on Information Sciences and Systems, pp. 1–6 (March 2012)

    Google Scholar 

  34. She, C., Yang, C.: Ensuring the quality-of-service of tactile internet. In: IEEE 83rd Vehicular Technology Conference (VTC Spring). IEEE, pp. 1–5 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Omaima Khalil or Anas Abou El Kalam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khalil, O., Abou El Kalam, A. (2019). Tactile Internet: New Challenges and Emerging Solutions. In: Farhaoui, Y., Moussaid, L. (eds) Big Data and Smart Digital Environment. ICBDSDE 2018. Studies in Big Data, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-030-12048-1_25

Download citation

Publish with us

Policies and ethics