Skip to main content

Mixture Modeling of Global Shape Priors and Autoencoding Local Intensity Priors for Left Atrium Segmentation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11395))

Abstract

Difficult image segmentation problems, e.g., left atrium in MRI, can be addressed by incorporating shape priors to find solutions that are consistent with known objects. Nonetheless, a single multivariate Gaussian is not an adequate model in cases with significant nonlinear shape variation or where the prior distribution is multimodal. Nonparametric density estimation is more general, but has a ravenous appetite for training samples and poses serious challenges in optimization, especially in high dimensional spaces. Here, we propose a maximum-a-posteriori formulation that relies on a generative image model by incorporating both local intensity and global shape priors. We use deep autoencoders to capture the complex intensity distribution while avoiding the careful selection of hand-crafted features. We formulate the shape prior as a mixture of Gaussians and learn the corresponding parameters in a high-dimensional shape space rather than pre-projecting onto a low-dimensional subspace. In segmentation, we treat the identity of the mixture component as a latent variable and marginalize it within a generalized expectation-maximization framework. We present a conditional maximization-based scheme that alternates between a closed-form solution for component-specific shape parameters that provides a global update-based optimization strategy, and an intensity-based energy minimization that translates the global notion of a nonlinear shape prior into a set of local penalties. We demonstrate our approach on the left atrial segmentation from gadolinium-enhanced MRI, which is useful in quantifying the atrial geometry in patients with atrial fibrillation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For notational simplicity, we will refer to \(p(\mathcal {Z}= z) = p(\mathcal {Z})\) hereafter.

References

  1. Calkins, H., et al.: 2017 hrs/ehra/ecas/aphrs/solaece expert consensus statement on catheter and surgical ablation of atrial fibrillation. Hear. Rhythm 14(10), e275–e444 (2017)

    Article  Google Scholar 

  2. McGann, C., et al.: Atrial fibrillation ablation outcome is predicted by left atrial remodeling on mri. Circ. Arrhythmia Electrophysiol. 7(1), 23–30 (2014)

    Article  Google Scholar 

  3. Hansen, B.J., et al.: Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts. Eur. Hear. J. 36(35), 2390–2401 (2015). https://doi.org/10.1093/eurheartj/ehv233

    Article  Google Scholar 

  4. Zhao, J., et al.: Three-dimensional integrated functional, structural, and computational mapping to define the structural “fingerprints” of heart-specific atrial fibrillation drivers in human heart ex vivo. J. Am. Hear. Assoc. 6(8), e005922 (2017). https://doi.org/10.1161/JAHA.117.005922

    Article  Google Scholar 

  5. Tobon-Gomez, C., et al.: Benchmark for algorithms segmenting the left atrium from 3d ct and mri datasets. IEEE Trans. Med. Imaging 34(7), 1460–1473 (2015)

    Article  Google Scholar 

  6. Ho, S.Y., Cabrera, J.A., Sanchez-Quintana, D.: Left atrial anatomy revisited. Circ. Arrhythmia Electrophysiol. 5(1), 220–228 (2012)

    Article  Google Scholar 

  7. Rousson, M., Paragios, N.: Prior knowledge, level set representations & visual grouping. Int. J. Comput. Vis. 76(3), 231–243 (2008)

    Article  Google Scholar 

  8. Cremers, D., Osher, S.J., Soatto, S.: Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. Int. J. Comput. Vis. 69(3), 335–351 (2006)

    Article  Google Scholar 

  9. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995). https://doi.org/10.1006/cviu.1995.1004

    Article  Google Scholar 

  10. Cremers, D., Kohlberger, T., Schnörr, C.: Shape statistics in kernel space for variational image segmentation. Pattern Recognit. 36(9), 1929–1943 (2003)

    Article  Google Scholar 

  11. Awate, S., Whitaker, R.: Multiatlas segmentation as nonparametric regression. IEEE Trans. Med. Imaging 33(9), 1803–1817 (2014)

    Article  Google Scholar 

  12. Aljabar, P., Heckemann, R.A., Hammers, A., Hajnal, J.V., Rueckert, D.: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. Neuroimage 46(3), 726–738 (2009)

    Article  Google Scholar 

  13. Wimmer, A., Soza, G., Hornegger, J.: A generic probabilistic active shape model for organ segmentation. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 26–33. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04271-3_4

    Chapter  Google Scholar 

  14. Rousson, M., Cremers, D.: Efficient kernel density estimation of shape and intensity priors for level set segmentation. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005, Part II. LNCS, vol. 3750, pp. 757–764. Springer, Heidelberg (2005). https://doi.org/10.1007/11566489_93

    Chapter  Google Scholar 

  15. Friedman, J.H., Stuetzle, W., Schroeder, A.: Projection pursuit density estimation. J. Am. Stat. Assoc. 79(387), 599–608 (1984). https://doi.org/10.1080/01621459.1984.10478086

    Article  MathSciNet  Google Scholar 

  16. Cootes, T.F., Taylor, C.J.: A mixture model for representing shape variation. Image Vis. Comput. 17(8), 567–573 (1999)

    Article  Google Scholar 

  17. Dasgupta, S.: Learning mixtures of Gaussians. In: 40th Annual Symposium on Foundations of Computer Science, pp. 634–644. IEEE (1999)

    Google Scholar 

  18. Bouveyron, C., Girard, S., Schmid, C.: High-dimensional data clustering. Comput. Stat. Data Anal. 52(1), 502–519 (2007)

    Article  MathSciNet  Google Scholar 

  19. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis. Chapman & Hall/CRC texts in statistical science, Boca Raton (2003)

    Google Scholar 

  20. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med. Imaging 15, 29 (2015). https://doi.org/10.1186/s12880-015-0068-x. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4533825/, 68[PII]

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Institutes of Health [grant numbers R01-HL135568-01 and P41-GM103545-19].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shireen Elhabian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sodergren, T., Bhalodia, R., Whitaker, R., Cates, J., Marrouche, N., Elhabian, S. (2019). Mixture Modeling of Global Shape Priors and Autoencoding Local Intensity Priors for Left Atrium Segmentation. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. STACOM 2018. Lecture Notes in Computer Science(), vol 11395. Springer, Cham. https://doi.org/10.1007/978-3-030-12029-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12029-0_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12028-3

  • Online ISBN: 978-3-030-12029-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics