Skip to main content

3D LV Probabilistic Segmentation in Cardiac MRI Using Generative Adversarial Network

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges (STACOM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11395))

  • 1900 Accesses

Abstract

Cardiac magnetic resonance imaging (MRI) is one of the most useful techniques to understand and measure cardiac functions. Given the MR image data, segmentation of the left ventricle (LV) myocardium is the most common task to be addressed for recovering and studying LV wall motion. However, most of segmentation methods heavily rely on the imaging appearance for extracting the myocardial contours (epi- and endo-cardium). These methods cannot guarantee a consistent volume of the heart wall during cardiac cycle in reconstructed 3D LV wall models, which is contradictory to the assumption of approximately constant myocardial tissue. In the paper, we propose a probability-based segmentation method to estimate the probabilities of boundary pixels in the trabeculated region near the solid wall belonging to blood or muscle. It helps avoid artifactually moving the endocardium boundary inward during systole, as commonly happens with simple threshold-based segmentation methods. Our method takes s stack of 2D cine MRI slices as input, and produces the 3D probabilistic segmentation of the heart wall using a generative adversarial network (GAN). Based on numerical experiments, our proposed method outperformed the baseline method in terms of evaluation metrics on a synthetic dataset. Moreover, we achieved very good quality reconstructed results with on a real 2D cine MRI dataset (there is no truly independent 3D ground truth). The proposed approach helps to achieve better understanding cardiovascular motion. Moreover, it is the first attempt to use probabilistic segmentation of LV myocardium for 3D heart wall reconstruction from 2D cardiac cine MRI data, to the best of our knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  2. Codella, N.C., et al.: Improved left ventricular mass quantification with partial voxel interpolation: In-Vivo and Necropsy Validation of a Novel Cardiac MRI Segmentation Algorithm. Circulation: Cardiovascular Imaging, CIRCIMAGING-111, vol. 31(4), pp. 845–853 (2011)

    Google Scholar 

  3. Sinclair, M., Bai, W., Puyol-Antón, E., Oktay, O., Rueckert, D., King, A.P.: Fully automated segmentation-based respiratory motion correction of multiplanar cardiac magnetic resonance images for large-scale datasets. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 332–340. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_38

    Chapter  Google Scholar 

  4. Yang, D., et al.: Automatic liver segmentation using an adversarial image-to-image network. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 507–515. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_58

    Chapter  Google Scholar 

  5. Yang, D., Wu, P., Tan, C., Pohl, K.M., Axel, L., Metaxas, D.: 3D motion modeling and reconstruction of left ventricle wall in cardiac MRI. In: Pop, M., Wright, G.A. (eds.) FIMH 2017. LNCS, vol. 10263, pp. 481–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59448-4_46

    Chapter  Google Scholar 

  6. Goodfellow, I., et al.: Generative adversarial nets. In Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  7. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  8. Yang, D., Huang, Q., Axel, L., Metaxas, D.: Multi-component deformable models coupled with 2D–3D U-Net for automated probabilistic segmentation of cardiac walls and blood. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 479–483. IEEE, April 2018

    Google Scholar 

  9. Zhuang, X., Shen, J.: Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI. Med. Image Anal. 31, 77–87 (2016)

    Article  Google Scholar 

  10. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, D., Liu, B., Axel, L., Metaxas, D. (2019). 3D LV Probabilistic Segmentation in Cardiac MRI Using Generative Adversarial Network. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. STACOM 2018. Lecture Notes in Computer Science(), vol 11395. Springer, Cham. https://doi.org/10.1007/978-3-030-12029-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12029-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12028-3

  • Online ISBN: 978-3-030-12029-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics