Matrix Diagonalization and Jordan Canonical Form

  • Rafael Martínez-GuerraEmail author
  • Oscar Martínez-Fuentes
  • Juan Javier Montesinos-García
Part of the Mathematical and Analytical Techniques with Applications to Engineering book series (MATE)


This chapter focuses on the basic theory of Matrix Diagonalization and Jordan Canonical Form.


  1. 1.
    Hoffman, K., Kunze, R.: Linear Algebra. Prentice-Hall (1971)Google Scholar
  2. 2.
    Axler, S.: Linear Algebra Done-Right. Springer-Verlag (1997)Google Scholar
  3. 3.
    Lipschutz, S.: Linear Algebra. McGraw Hill (2009)Google Scholar
  4. 4.
    Anton, H.: Elementary Linear Algebra. Wiley (2010)Google Scholar
  5. 5.
    Grossman, S.: Elementary Linear Algebra. Wadsworth Publishing (1987)Google Scholar
  6. 6.
    Whitelaw, T.: Introduction to Linear Algebra. Chapman & Hall/CRC (1992)Google Scholar
  7. 7.
    kolman, B.: Introductory Linear Algebra an Applied First Course. Pearson Education (2008)Google Scholar
  8. 8.
    Halmos, P.R.: Finite-Dimensional Vector Spaces. Courier Dover Publications (2017)Google Scholar
  9. 9.
    Nef, W.: Linear Algebra. Dover Publications (1967)Google Scholar
  10. 10.
    Lang, S.: Linear Algebra. Springer (2004)Google Scholar
  11. 11.
    Nering, E.: Linear Algebra and Matrix Theory. Wiley (1970)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rafael Martínez-Guerra
    • 1
    Email author
  • Oscar Martínez-Fuentes
    • 1
  • Juan Javier Montesinos-García
    • 1
  1. 1.Departamento de Control AutomáticoCINVESTAV-IPNMexico CityMexico

Personalised recommendations