Mathematical Background

  • Rafael Martínez-GuerraEmail author
  • Oscar Martínez-Fuentes
  • Juan Javier Montesinos-García
Part of the Mathematical and Analytical Techniques with Applications to Engineering book series (MATE)


This chapter focuses on the basic concepts and algebra of sets as well as a brief introduction to the theory of functions and the well known principle of mathematical induction. All this background will be needed as a tool to understand the theory of linear algebra and differential equations as set forth in the following chapters.


  1. 1.
    Adamson, I. T.: A Set Theory Workbook. Springer Science & Business Median, New York (2012)Google Scholar
  2. 2.
    Hammack, R.: Book of proof. Virginia Commonwealth University Mathematics (2013)Google Scholar
  3. 3.
    Lang, S.: Algebra. Springer, New York (2002)CrossRefGoogle Scholar
  4. 4.
    Lipschutz, S.: Schaum’s outline of theory and problems of set theory and related topics (1964)Google Scholar
  5. 5.
    Bourbaki, N.: Theory of Sets. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Halmos, P.R.: Naive Set Theory. Dover Publications, New York (2017)Google Scholar
  7. 7.
    Henkin, L.: On mathematical induction. Am. Math. Monthly 67(4), 323–338 (1960)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hrbacek, K., Jech, T.: Introduction to Set Theory, Revised and Expanded. CRC Press, Boca Raton (1999)Google Scholar
  9. 9.
    Sominskii, I.S.: The Method of Mathematical Induction (Popular Lectures in Mathematics). Pergamon Press, Oxford (1961)Google Scholar
  10. 10.
    Bourbaki, N. Commutative Algebra (Vol. 8), Hermann, Paris (1972)Google Scholar
  11. 11.
    Kuratowski, K.: Introduction to Set Theory and Topology. Elsevier, Amsterdam (2014)CrossRefGoogle Scholar
  12. 12.
    Smith, D., Eggen, M., Andre, R.S.: A Transition to Advanced Mathematics. Nelson Education (2014)Google Scholar
  13. 13.
    Jech, T. J.: The axiom of choice. Courier Corporation (2008)Google Scholar
  14. 14.
    Kunz, E.: Introduction to Commutative Algebra and Algebraic Geometry. Birkhuser, Boston (1985)CrossRefGoogle Scholar
  15. 15.
    Zariski, O., Samuel, P.: Commutative Algebra, vol. 1. Springer Science & Business Media, New York (1958)Google Scholar
  16. 16.
    Birkhoff, G., Mac Lane, S.: A Survey of Modern Algebra. Universities Press (1965)Google Scholar
  17. 17.
    Sontag, E.D.: Linear systems over commutative rings. A survey. Ricerche di Automatica 7(1), 1–34 (1976)Google Scholar
  18. 18.
    Samuel, P., Serge, B.: Mthodes d’algbre abstraite en gomtrie algbrique. Springer, Heidelberg (1967)Google Scholar
  19. 19.
    Zariski, O., Samuel, P.: Commutative Algebra, vol. 2. Springer Science & Business Media, New York (1960)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rafael Martínez-Guerra
    • 1
    Email author
  • Oscar Martínez-Fuentes
    • 1
  • Juan Javier Montesinos-García
    • 1
  1. 1.Departamento de Control AutomáticoCINVESTAV-IPNMexico CityMexico

Personalised recommendations