Skip to main content

A Scalable 2D, Low Power Airflow Probe for Unmanned Vehicle and WSN Applications

  • Conference paper
  • First Online:
Book cover Applications in Electronics Pervading Industry, Environment and Society (ApplePies 2018)

Abstract

A compact anemometer, capable of detecting the magnitude and direction of the wind in a plane, is presented. The device constitutes an evolution of a class of sensors that exploit a recently proposed original approach, involving fluidic processing of the pressures induced around a cylinder. A significant size reduction with respect to previous prototypes has been achieved by the use of a tiny differential pressure sensor based on a MEMS System on a Chip. Preliminary characterization performed in a wind tunnel is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pajares, G., Peruzzi, A., Gonzalez-de-Santos, P.: Sensors in agriculture and forestry. Sensors 13, 12132–12139 (2013)

    Article  Google Scholar 

  2. Gao, Y., Ramirez, B.C., Hoff, S.J.: Omnidirectional thermal anemometer for low airspeed and multi-point measurement applications. Comput. Electron. Agric. 127, 439–450 (2016)

    Article  Google Scholar 

  3. López, A., Valera, D.L., Molina-Aiz, F., Peña, A.: Thermography and sonic anemometry to analyze air heaters in mediterranean greenhouses. Sensors 12, 13852–13870 (2012)

    Article  Google Scholar 

  4. Murthy, K.S.R., Rahi, O.P.: A comprehensive review of wind resource assessment. Renew. Sustain. Energy Rev. 72, 1320–1342 (2017)

    Article  Google Scholar 

  5. Karthikeya, B.R., Negi, P.S., Srikanth, N.: Wind resource assessment for urban renewable energy application in Singapore. Renew. Energy 87, 403–414 (2016)

    Article  Google Scholar 

  6. Dobre, A., Arnold, S.J., Smalley, R.J., Boddy, J.W.D., Barlow, J.F., Tomlin, A.S., Belcher, S.E.: Flow field measurements in the proximity of an urban intersection in London, UK. Atmos. Environ. 39, 4647–4657 (2005)

    Article  Google Scholar 

  7. Prudden, S., Fisher, A., Marino, M., Mohamed, A., Watkins, S., Wild, G.: Measuring wind with Small Unmanned Aircraft Systems. J. Wind Eng. Ind. Aerodyn. 176, 197–210 (2018)

    Article  Google Scholar 

  8. Bruschi, P., Piotto, M., Dell’Agnello, F., Ware, J., Roy, N.: Wind speed and direction detection by means of solid-state anemometers embedded on small quadcopters. Procedia Eng. 168, 802–805 (2016)

    Article  Google Scholar 

  9. Fukazawa, Y., Ishida, H.: Estimating gas-source location in outdoor environment using mobile robot equipped with gas sensors and anemometer. In: Proceedings of IEEE Sensors 2009, pp. 1721–1724 (2009)

    Google Scholar 

  10. Martínez, D., Clotet, E., Tresanchez, M., Moreno, J., Jiménez-Soto, J.M., Magrans, R., Palacín, J.: First characterization results obtained in a wind tunnel designed for indoor gas source detection. In: Proceedings of Advanced Robotics (ICAR), pp. 629–634 (2015)

    Google Scholar 

  11. Seo, W., Baek, K.R.: Indoor dead reckoning localization using ultrasonic anemometer with IMU. J. Sens. 2017, 1–12 (2017)

    Article  Google Scholar 

  12. Han, D., Kim, S., Park, S.: Two-dimensional ultrasonic anemometer using the directivity angle of an ultrasonic sensor. Microelectron. J. 39, 1195–1199 (2008)

    Article  Google Scholar 

  13. Lopes, G.M.G., da Silva Junior, D.P., de França, J.A., de Morais França, M.B., de Souza Ribeiro, L., Moreira, M., Elias, P.: Development of 3-D ultrasonic anemometer with nonorthogonal geometry for the determination of high-intensity winds. IEEE Trans. Instrum. Meas. 66, 2836–2844 (2017)

    Article  Google Scholar 

  14. Bryer, D.W., Pankhurst, R.C.: Pressure-probe methods for determining wind speed and flow direction, pp. 41–74. Campfield Press, St Albans, UK (1971)

    Google Scholar 

  15. Hall, B.F., Povey, T.: The Oxford Probe: an open access five-hole probe for aerodynamic measurements. Meas. Sci. Technol. 28(035004), 1–12 (2017)

    Google Scholar 

  16. Bruschi, P., Dei, M., Piotto, M.: A low-power 2-D wind sensor based on integrated flow meters. IEEE Sens. J. 9, 1688–1696 (2009)

    Article  Google Scholar 

  17. Piotto, M., Pennelli, G., Bruschi, P.: Fabrication and characterization of a directional anemometer based on a single chip MEMS flow sensor. Microelectron. Eng. 88, 2214–2217 (2011)

    Article  Google Scholar 

  18. Liu, C., Du, L., Zhao, Z.: A directional cylindrical anemometer with four sets of differential pressure sensors. Rev. Sci. Instrum. 87(035105), 1–8 (2016)

    Google Scholar 

  19. Bruschi, P., Piotto, M.: Determination of the wind speed and direction by means of fluidic-domain signal processing. IEEE Sens. J. 18, 985–994 (2018)

    Article  Google Scholar 

  20. Piotto, M., Del Cesta, S., Bruschi, P.: A compact, dual channel flow-based differential pressure sensor with mPa resolution and sub-10 mW power consumption. Procedia Eng. 168, 757–761 (2016)

    Article  Google Scholar 

  21. Bruschi, P., Nurra, V., Piotto, M.: A compact package for integrated silicon thermal gas flow meters. Microsyst. Technol. 14, 943–949 (2008)

    Article  Google Scholar 

  22. Bruschi, P., Dei, M., Piotto, M.: A single chip, double channel thermal flow meter. Microsyst. Technol. 15, 1179–1186 (2009)

    Article  Google Scholar 

  23. Piotto, M., Del Cesta, S., Bruschi, P.: Precise measurement of gas volumes by means of low-offset mems flow sensors with μl/min resolution. Sensors 17(2497), 1–13 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Bruschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bruschi, P., Ria, A., Piotto, M. (2019). A Scalable 2D, Low Power Airflow Probe for Unmanned Vehicle and WSN Applications. In: Saponara, S., De Gloria, A. (eds) Applications in Electronics Pervading Industry, Environment and Society. ApplePies 2018. Lecture Notes in Electrical Engineering, vol 573. Springer, Cham. https://doi.org/10.1007/978-3-030-11973-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11973-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11972-0

  • Online ISBN: 978-3-030-11973-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics