Skip to main content

Part of the book series: PoliTO Springer Series ((PTSS))

  • 532 Accesses

Abstract

In this chapter the modellisation of a single dry yarn under impact load as an homogeneous hyperelastic continuous body will be treated. In the first part, a preliminary introduction to dry fabrics mesoscopic models in impact applications will be performed. In the second part, an hyperelastic constitutive law for yarn structures continuous modeling will be presented. The proposed constitutive behaviour aims to the modellisation of the yarn transverse cross section evolution during an impact which is actually obliged in the classical linear elastic formulation. A theoretical introduction to the hyperelastic law is followed by its validation using the numerical model of transversely impacted yarn as benchmark test. The obtained results are compared with those from microscopic and classic linear elastic mesoscopic studies. A good agreement is obtained from the comparison with the different approaches. Moreover, the ability of the proposed model in representing yarn transverse behavior and formulate multiaxial failure criteria compared to the linear elastic approach universally adopted is remarked.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aimène Y, Vidal-Sallé E, Hagège B, Sidoroff F, Boisse P (2009) Hyperelastic approach for composite reinforcement large deformation analysis. J Compos Mater 44(1):5–26

    Article  Google Scholar 

  2. Charmetant A, Vidal-Sallé E, Boisse P (2011) Hyperelastic modelling for mesoscopic analyses of composite reinforcements. Compos Sci Technol 71(14):1623–1631

    Article  Google Scholar 

  3. Chocron S, Figueroa E, King N, Kirchdoerfer T, Nicholls A, Sagebiel E, Weiss C, Freitas CJ (2010) Modeling and validation of full fabric targets under ballistic impact. Compos Sci Technol 70(13):2012–2022

    Article  Google Scholar 

  4. Chocron S, Kirchdoerfer T, King N, Freitas CJ (2011) Modeling of fabric impact with high speed imaging and Nickel-Chromium wires validation. J Appl Mech 78(5)

    Article  Google Scholar 

  5. Criscione JC, Douglas SA, Hunter WC (2001) Physically based strain invariant set for materials exhibiting transversely isotropic behavior. J Mech Phys Solids 49(4):871–897

    Article  Google Scholar 

  6. Cunniff P (1999) Decoupled response of textile body armor. Decoupled response of textile body armor. In: Proceedings of the 18th international symposium on ballistics

    Google Scholar 

  7. Darijani H, Naghdabadi R (2010) Hyperelastic materials behavior modeling using consistent strain energy density functions. Acta Mech 213(3–4):235–254

    Article  Google Scholar 

  8. del Sorbo P, Girardot G, Dau F, Iordanoff I (2018) Numerical investigations on a yarn structure at the microscale towards scale transition. Compos Struct 183:489–498

    Article  Google Scholar 

  9. Duan Y, Keefe M, Bogetti TA, Cheeseman BA, Powers B (2006) A numerical investigation of the influence of friction on energy absorption by a high-strength fabric subjected to ballistic impact. Int J Impact Eng 32(8):1299–1312

    Article  Google Scholar 

  10. Duan Y, Keefe M, Bogetti TA, Powers B (2006) Finite element modeling of transverse impact on a ballistic fabric. Int J Mech Sci 48(1):33–43

    Article  Google Scholar 

  11. Gasser A, Boisse P, Hanklar S (2000) Mechanical behaviour of dry fabric reinforcements. 3D simulations versus biaxial tests. Comput Mater Sci 17(1):7–20

    Article  Google Scholar 

  12. Ha-Minh C, Imad A, Kanit T, Boussu F (2013) Numerical analysis of a ballistic impact on textile fabric. Int J Mech Sci 69:32–39

    Article  Google Scholar 

  13. Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineers. Wiley, New York

    MATH  Google Scholar 

  14. Hudspeth M, Chu M, Jewell E, Lim B, Ytuarte E, Tsutsui W, Horner S, Zheng J, Chen W (2016) Effect of projectile nose geometry on the critical velocity and failure of yarn subjected to transverse impact. Text Res J 87(8):953–972

    Article  Google Scholar 

  15. Isvilanonda V, Iaquinto JM, Pai S, Mackenzie-Helnwein P, Ledoux WR (2016) Hyperelastic compressive mechanical properties of the subcalcaneal soft tissue: an inverse finite element analysis. J Biomech 49(7):1186–1191

    Article  Google Scholar 

  16. Nilakantan G (2013) Filament-level modeling of Kevlar KM2 yarns for ballistic impact studies. Compos Struct 104:1–13

    Article  Google Scholar 

  17. Nilakantan G (2018) Experimentally validated predictive finite element modeling of the V0-V100 probabilistic penetration response of a Kevlar fabric against a spherical projectile. Int J Prot Struct (In Press)

    Google Scholar 

  18. Ogden RW, Saccomandi G, Sgura I (2004) Fitting hyperelastic models to experimental data. Comput Mech 34(6):484–502

    Article  Google Scholar 

  19. Rashid B, Destrade M, Gilchrist MD (2013) Mechanical characterization of brain tissue in simple shear at dynamic strain rates. J Mech Behav Biomed Mater 28:71–85

    Article  Google Scholar 

  20. Sockalingam S, Gillespie JW, Keefe M (2014) On the transverse compression response of Kevlar KM2 using fiber-level finite element model. Int J Solids Struct 51(13):2504–2517

    Article  Google Scholar 

  21. Sockalingam S, Chowdhury SC, Gillespie JW, Keefe M (2016) Recent advances in modeling and experiments of Kevlar ballistic fibrils, fibers, yarns and flexible woven textile fabrics - a review. Text Res J 87(8):984–1010

    Article  Google Scholar 

  22. Sockalingam S, Gillespie JW, Keefe M (2016) Influence of multiaxial loading on the failure of Kevlar KM2 single fiber. Text Res J 88(5):483–498

    Article  Google Scholar 

  23. Tabiei A, Nilakantan G (2008) Ballistic impact of dry woven fabric composites: a review. Appl Mech Rev 61(1)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Del Sorbo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Del Sorbo, P., Girardot, J., Dau, F., Iordanoff, I. (2019). Mesoscale Hyperelastic Model of a Single Yarn Under High Velocity Transverse Impact. In: Petrolo, M. (eds) Advances in Predictive Models and Methodologies for Numerically Efficient Linear and Nonlinear Analysis of Composites. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-030-11969-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11969-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11968-3

  • Online ISBN: 978-3-030-11969-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics