Skip to main content

Part of the book series: PoliTO Springer Series ((PTSS))

Abstract

This chapter addresses a multi-scale analysis of beam structures using the Carrera Unified Formulation (CUF). Under the framework of the \(\text {FE}^{2}\) method, the analysis is divided into a macroscopic/structural problem and a microscopic/material problem. At the macroscopic level, several higher-order refined beam elements can be easily implemented via CUF by deriving a fundamental nucleus that is independent of the approximation order over the thickness and the number of nodes per element (they are free parameters of the formulation). The unknown macroscopic constitutive law is obtained by numerical homogenization of a Representative Volume Element (RVE) at the microscopic level. Vice versa, the microscopic deformation gradient is calculated from the macroscopic model. Information is passed between the two scales in a \(\text {FE}^{2}\) sense. The resulting nonlinear problem is solved through the Asymptotic Numerical Method (ANM) that is more reliable and less time consuming when compared to classical iterative methods. The developed models are used as a first attempt to investigate the microstructure effect on the macrostructure geometrically nonlinear response. Results are compared regarding accuracy and computational costs towards full FEM solutions demonstrating the robustness and efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aboudi J (1982) A continuum theory for fiber-reinforced elastic-viscoplastic composites. Int J Eng Sci 20(5):605–621

    Article  Google Scholar 

  2. Aboudi J, Pindera MJ, Arnold SM (2003) Higher-order theory for periodic multiphase materials with inelastic phases. Int J Plast 19(6):805–847

    Article  Google Scholar 

  3. Carrera E, Giunta G (2010) Refined beam theories based on a unified formulation. Int J Appl Mech 2(1):117–143

    Article  Google Scholar 

  4. Carrera E, Giunta G, Petrolo M (2011) Beam structures: classical and advanced theories. Wiley-Blackwell

    Google Scholar 

  5. Cochelin B, Damil N, Potier-Ferry M (1994) Asymptotic-numerical methods and pade approximants for non-linear elastic structures. Int J Number Meth Eng 37(7):1187–1213

    Article  Google Scholar 

  6. Damil N, Potier-Ferry M (1990) A new method to compute perturbed bifurcations: application to the buckling of imperfect elastic structures. Int J Eng Sci 28(9):943–957

    Article  MathSciNet  Google Scholar 

  7. Dvorak GJ, Bahei-El-Din YA (1979) Elastic-plastic behavior of fibrous composites. J Mech Phys Solids 27(1):51–72

    Article  Google Scholar 

  8. Dvorak GJ, Benveniste Y (1992) On transformation strains and uniform fields in multiphase elastic media. Proc R Soc Lond A 437(1900):291–310

    Article  MathSciNet  Google Scholar 

  9. Eshelby JD (1959) The elastic field outside an ellipsoidal inclusion. Proc Royal Soc London Ser A 252:561–569

    MathSciNet  MATH  Google Scholar 

  10. Feyel F, Chaboche JL (2000) FE\(^{2}\) multiscale approach for modelling the elastoviscoplastic behaviour of long fibre sic/ti composite materials. Comput Methods Appl Mech Eng 183(3):309–330

    Article  Google Scholar 

  11. Fish J, Shek K, Pandheeradi M, Shephard MS (1997) Computational plasticity for composite structures based on mathematical homogenization: Theory and practice. Comput Methods Appl Mech Eng 148(1–2):53–73

    Article  MathSciNet  Google Scholar 

  12. Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13(4):213–222

    Article  MathSciNet  Google Scholar 

  13. Hu H, Belouettar S, Potier-Ferry M et al (2009) A novel finite element for global and local buckling analysis of sandwich beams. Compos Struct 90(3):270–278

    Article  Google Scholar 

  14. Kouznetsova VG, Geers MGD, Brekelmans WAM (2004) Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193(48):5525–5550

    Article  Google Scholar 

  15. Ladevèze P, Nouy A, Loiseau O (2002) A multiscale computational approach for contact problems. Comput Methods Appl Mech Eng 191(43):4869–4891

    Article  MathSciNet  Google Scholar 

  16. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Mater 21(5):571–574

    Article  Google Scholar 

  17. Nezamabadi S (2009) Méthode Asymptotique Numérique pour l’tude multiéchelle des instabilités dans les matériaux hétérogenes. PhD thesis, Université Paul Verlaine Metz

    Google Scholar 

  18. Nezamabadi S, Yvonnet J, Zahrouni H et al (2009) A multilevel computational strategy for handling microscopic and macroscopic instabilities. Comput Methods Appl Mech Eng 198(27):2099–2110

    Article  Google Scholar 

  19. Pineda EJ, Waas AM, Bednarcyk BA et al (2009) Progressive damage and failure modeling in notched laminated fiber reinforced composites. Int J Fract 158(2):125–143

    Article  Google Scholar 

  20. Xu R, Bouby C, Zahrouni H et al (2018) 3d modeling of shape memory alloy fiber reinforced composites by multiscale finite element method. Compos Struct 200:408–419

    Article  Google Scholar 

  21. Yu W, Tang T (2007) Variational asymptotic method for unit cell homogenization of periodically heterogeneous materials. Int J Solids Struct 44(11–12):3738–3755

    Article  MathSciNet  Google Scholar 

  22. Zienkiewicz OC, Taylor RL (1977) The finite element method. McGraw-hill London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Giunta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hui, Y., Giunta, G., Belouettar, S., Hu, H., Carrera, E. (2019). Multiscale Nonlinear Analysis of Beam Structures by Means of the Carrera Unified Formulation. In: Petrolo, M. (eds) Advances in Predictive Models and Methodologies for Numerically Efficient Linear and Nonlinear Analysis of Composites. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-030-11969-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11969-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11968-3

  • Online ISBN: 978-3-030-11969-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics