Skip to main content

Stem Cell Therapy for Liver Diseases

  • Chapter
  • First Online:
Digestive System Diseases

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 542 Accesses

Abstract

Liver diseases consist a growing health problem and one of the most serious causes of death worldwide. Liver transplantation is an established and successful procedure that represents the only gold standard therapy for a wide variety of liver diseases refractory to medical treatment. Despite its therapeutic potential, it remains a non-specific approach that is limited by donor organ shortage and a lifelong immunosuppressive therapy with its specific risks. Recently, liver cell therapy has focused on the hepatoprotective potential of stem cells via restoration of normal function, after tissue injury and regulation of the inflammatory processes in preclinical disease models.

This chapter provides a description of the current issues on stem cell-based regenerative opportunities for liver diseases. In more detail, there will be discussed thoroughly the different stem cell sources and their clinical applications in in vivo rodent models and in patients with liver failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson JA, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  CAS  PubMed  Google Scholar 

  2. Brolen G, et al. Hepatocyte-like cells derived from human embryonic stem cells specifically via definitive endoderm and a progenitor stage. J Biotechnol. 2010;145(3):284–94.

    Article  CAS  PubMed  Google Scholar 

  3. Hay DC, et al. Highly efficient differentiation of hESCs to functional hepatic endoderm requires ActivinA and Wnt3a signaling. Proc Natl Acad Sci U S A. 2008;105(34):12301–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Woo DH, et al. Direct and indirect contribution of human embryonic stem cell-derived hepatocyte-like cells to liver repair in mice. Gastroenterology. 2012;142(3):602–11.

    Article  CAS  PubMed  Google Scholar 

  5. Moriya K, et al. Embryonic stem cells develop into hepatocytes after intrasplenic transplantation in CCl4-treated mice. World J Gastroenterol. 2007;13(6):866–73.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bale SS, et al. In vitro platforms for evaluating liver toxicity. Exp Biol Med (Maywood). 2014;239(9):1180–91.

    Article  CAS  Google Scholar 

  7. Swijnenburg RJ, et al. Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc Natl Acad Sci U S A. 2008;105(35):12991–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kiskinis E, Eggan K. Progress toward the clinical application of patient-specific pluripotent stem cells. J Clin Invest. 2010;120(1):51–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van de Ven C, et al. The potential of umbilical cord blood multipotent stem cells for nonhematopoietic tissue and cell regeneration. Exp Hematol. 2007;35(12):1753–65.

    Article  PubMed  CAS  Google Scholar 

  10. Campard D, et al. Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocyte-like cells. Gastroenterology. 2008;134(3):833–48.

    Article  CAS  PubMed  Google Scholar 

  11. Piscaglia AC, et al. Human cordonal stem cell intraperitoneal injection can represent a rescue therapy after an acute hepatic damage in immunocompetent rats. Transplant Proc. 2005;37(6):2711–4.

    Article  CAS  PubMed  Google Scholar 

  12. Di Campli C, et al. A human umbilical cord stem cell rescue therapy in a murine model of toxic liver injury. Dig Liver Dis. 2004;36(9):603–13.

    Article  PubMed  Google Scholar 

  13. Kim GJ. Treatment of liver disease using placental stem cells: feasibility of placental stem cells in liver diseases: potential implication of new cell therapy-based strategies for hepatic diseases. Perinatal Stem Cells. 2014:159–170.

    Google Scholar 

  14. Peng SY, et al. Therapeutic potential of amniotic-fluid-derived stem cells on liver fibrosis model in mice. Taiwan J Obstet Gynecol. 2014;53(2):151–7.

    Article  PubMed  Google Scholar 

  15. Zagoura DS, et al. Therapeutic potential of a distinct population of human amniotic fluid mesenchymal stem cells and their secreted molecules in mice with acute hepatic failure. Gut. 2012;61(6):894–906.

    Article  CAS  PubMed  Google Scholar 

  16. Zheng YB, et al. Amniotic-fluid-derived mesenchymal stem cells overexpressing interleukin-1 receptor antagonist improve fulminant hepatic failure. PLoS One. 2012;7(7):e41392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Piscaglia AC, et al. Stem cell-based therapies for liver diseases: state of the art and new perspectives. Stem Cells Int. 2010;2010:259461.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Scudellari M. How iPS cells changed the world. Nature. 2016;534(7607):310–2.

    Article  PubMed  Google Scholar 

  19. Yu J, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.

    Article  CAS  PubMed  Google Scholar 

  20. Stadtfeld M, et al. Induced pluripotent stem cells generated without viral integration. Science. 2008;322(5903):945–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jia F, et al. A nonviral minicircle vector for deriving human iPS cells. Nat Methods. 2010;7(3):197–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Colak D, et al. Promoter-bound trinucleotide repeat mRNA drives epigenetic silencing in fragile X syndrome. Science. 2014;343(6174):1002–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kang X, et al. Effects of integrating and non-integrating reprogramming methods on copy number variation and genomic stability of human induced pluripotent stem cells. PLoS One. 2015;10(7):e0131128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Varela I, et al. Generation of human beta-thalassemia induced pluripotent cell lines by reprogramming of bone marrow-derived mesenchymal stromal cells using modified mRNA. Cell Reprogram. 2014;16(6):447–55.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou H, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. 2009;4(5):381–4.

    Article  CAS  PubMed  Google Scholar 

  26. Shi Y, et al. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell. 2008;2(6):525–8.

    Article  CAS  PubMed  Google Scholar 

  27. Ji P, et al. Induced pluripotent stem cells: generation strategy and epigenetic mystery behind reprogramming. Stem Cells Int. 2016;2016:8415010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kim K, et al. Epigenetic memory in induced pluripotent stem cells. Nature. 2010;467(7313):285–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Singh VK, et al. Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol. 2015;3:2.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Takayama K, et al. Efficient generation of functional hepatocytes from human embryonic stem cells and induced pluripotent stem cells by HNF4alpha transduction. Mol Ther. 2012;20(1):127–37.

    Article  CAS  PubMed  Google Scholar 

  31. Chen YF, et al. Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol. Hepatology. 2012;55(4):1193–203.

    Article  CAS  PubMed  Google Scholar 

  32. Sakurai F, et al. Human induced-pluripotent stem cell-derived hepatocyte-like cells as an in vitro model of human hepatitis B virus infection. Sci Rep. 2017;7:45698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Song Z, et al. Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res. 2009;19(11):1233–42.

    Article  PubMed  Google Scholar 

  34. Yamashita T, et al. Billion-scale production of hepatocyte-like cells from human induced pluripotent stem cells. Biochem Biophys Res Commun. 2018;496(4):1269–75.

    Article  CAS  PubMed  Google Scholar 

  35. Asgari S, et al. Differentiation and transplantation of human induced pluripotent stem cell-derived hepatocyte-like cells. Stem Cell Rev. 2013;9(4):493–504.

    Article  CAS  Google Scholar 

  36. Espejel S, et al. Induced pluripotent stem cell-derived hepatocytes have the functional and proliferative capabilities needed for liver regeneration in mice. J Clin Invest. 2010;120(9):3120–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Takebe T, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013;499(7459):481–4.

    Article  CAS  PubMed  Google Scholar 

  38. Yanagi Y, et al. In vivo and ex vivo methods of growing a liver bud through tissue connection. Sci Rep. 2017;7(1):14085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Nicolas C, et al. Stem cell therapies for treatment of liver disease. Biomedicines. 2016;4(1):2.

    Article  PubMed Central  CAS  Google Scholar 

  40. Gieseck RL 3rd, et al. Maturation of induced pluripotent stem cell derived hepatocytes by 3D-culture. PLoS One. 2014;9(1):e86372.

    Article  PubMed  CAS  Google Scholar 

  41. Hong SG, et al. Path to the clinic: assessment of iPSC-based cell therapies in vivo in a nonhuman primate model. Cell Rep. 2014;7(4):1298–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bird TG, Lorenzini S, Forbes SJ. Activation of stem cells in hepatic diseases. Cell Tissue Res. 2008;331(1):283–300.

    Article  CAS  PubMed  Google Scholar 

  43. Piscaglia AC, et al. Stem cell-based therapy in gastroenterology and hepatology. Minim Invasive Ther Allied Technol. 2008;17(2):100–18.

    Article  PubMed  Google Scholar 

  44. Gilchrist ES, Plevris JN. Bone marrow-derived stem cells in liver repair: 10 years down the line. Liver Transpl. 2010;16(2):118–29.

    Article  PubMed  Google Scholar 

  45. Thorgeirsson SS, Grisham JW. Hematopoietic cells as hepatocyte stem cells: a critical review of the evidence. Hepatology. 2006;43(1):2–8.

    Article  PubMed  Google Scholar 

  46. Eckersley-Maslin MA, et al. Bone marrow stem cells and the liver: are they relevant? J Gastroenterol Hepatol. 2009;24(10):1608–16.

    Article  PubMed  Google Scholar 

  47. Asahara T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999;85(3):221–8.

    Article  CAS  PubMed  Google Scholar 

  48. Nakamura T, et al. Significance and therapeutic potential of endothelial progenitor cell transplantation in a cirrhotic liver rat model. Gastroenterology. 2007;133(1):91–107 e1.

    Article  CAS  PubMed  Google Scholar 

  49. Wang L, et al. Liver sinusoidal endothelial cell progenitor cells promote liver regeneration in rats. J Clin Invest. 2012;122(4):1567–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Taniguchi E, et al. Endothelial progenitor cell transplantation improves the survival following liver injury in mice. Gastroenterology. 2006;130(2):521–31.

    Article  CAS  PubMed  Google Scholar 

  51. Ling CC, et al. Post-transplant endothelial progenitor cell mobilization via CXCL10/CXCR3 signaling promotes liver tumor growth. J Hepatol. 2014;60(1):103–9.

    Article  CAS  PubMed  Google Scholar 

  52. Theise ND, et al. Liver from bone marrow in humans. Hepatology. 2000;32(1):11–6.

    Article  CAS  PubMed  Google Scholar 

  53. Austin TW, Lagasse E. Hepatic regeneration from hematopoietic stem cells. Mech Dev. 2003;120(1):131–5.

    Article  CAS  PubMed  Google Scholar 

  54. Alison MR, et al. Hepatocytes from non-hepatic adult stem cells. Nature. 2000;406(6793):257.

    Article  CAS  PubMed  Google Scholar 

  55. De Silvestro G, et al. Mobilization of peripheral blood hematopoietic stem cells following liver resection surgery. Hepato-Gastroenterology. 2004;51(57):805–10.

    PubMed  Google Scholar 

  56. Gehling UM, et al. Partial hepatectomy induces mobilization of a unique population of haematopoietic progenitor cells in human healthy liver donors. J Hepatol. 2005;43(5):845–53.

    Article  CAS  PubMed  Google Scholar 

  57. Thomas JA, et al. Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology. 2011;53(6):2003–15.

    Article  CAS  PubMed  Google Scholar 

  58. Schwartz RE, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest. 2002;109(10):1291–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kallis YN, Alison MR, Forbes SJ. Bone marrow stem cells and liver disease. Gut. 2007;56(5):716–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pittenger MF, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  CAS  PubMed  Google Scholar 

  61. Maleki M, et al. Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int J Stem Cells. 2014;7(2):118–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Trounson A, McDonald C. Stem cell therapies in clinical trials: Progress and challenges. Cell Stem Cell. 2015;17(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  63. Wang Y, et al. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol. 2014;15(11):1009–16.

    Article  CAS  PubMed  Google Scholar 

  64. Lee KD, et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology. 2004;40(6):1275–84.

    Article  CAS  PubMed  Google Scholar 

  65. Hong SH, et al. In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells. Biochem Biophys Res Commun. 2005;330(4):1153–61.

    Article  CAS  PubMed  Google Scholar 

  66. Aurich I, et al. Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers. Gut. 2007;56(3):405–15.

    Article  CAS  PubMed  Google Scholar 

  67. Kuo TK, et al. Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology. 2008;134(7):2111–21, 2121 e1–3.

    Article  PubMed  Google Scholar 

  68. Sato Y, et al. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood. 2005;106(2):756–63.

    Article  CAS  PubMed  Google Scholar 

  69. Chamberlain J, et al. Efficient generation of human hepatocytes by the intrahepatic delivery of clonal human mesenchymal stem cells in fetal sheep. Hepatology. 2007;46(6):1935–45.

    Article  CAS  PubMed  Google Scholar 

  70. Jacobs SA, et al. Immunological characteristics of human mesenchymal stem cells and multipotent adult progenitor cells. Immunol Cell Biol. 2013;91(1):32–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–22.

    Article  CAS  PubMed  Google Scholar 

  72. Meier RP, et al. Transplantation of mesenchymal stem cells for the treatment of liver diseases, is there enough evidence? Stem Cell Res. 2013;11(3):1348–64.

    Article  CAS  PubMed  Google Scholar 

  73. Natarajan A, Wagner B, Sibilia M. The EGF receptor is required for efficient liver regeneration. Proc Natl Acad Sci U S A. 2007;104(43):17081–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lin N, et al. Nerve growth factor-mediated paracrine regulation of hepatic stellate cells by multipotent mesenchymal stromal cells. Life Sci. 2009;85(7–8):291–5.

    Article  CAS  PubMed  Google Scholar 

  75. Higashiyama R, et al. Bone marrow-derived cells express matrix metalloproteinases and contribute to regression of liver fibrosis in mice. Hepatology. 2007;45(1):213–22.

    Article  CAS  PubMed  Google Scholar 

  76. Waterman RS, et al. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One. 2010;5(4):e10088.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Manzini BM, et al. Useful properties of undifferentiated mesenchymal stromal cells and adipose tissue as the source in liver-regenerative therapy studied in an animal model of severe acute fulminant hepatitis. Cytotherapy. 2015;17(8):1052–65.

    Article  CAS  PubMed  Google Scholar 

  78. Katsuda T, et al. The in vivo evaluation of the therapeutic potential of human adipose tissue-derived mesenchymal stem cells for acute liver disease. Methods Mol Biol. 2014;1213:57–67.

    Article  CAS  PubMed  Google Scholar 

  79. Chen G, et al. Adipose-derived stem cell-based treatment for acute liver failure. Stem Cell Res Ther. 2015;6:40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Yoshio Sakai MT, Seki A, Sunagozaka H, Terashima T, Komura T, Yamato M, Miyazawa M, Kawaguchi K, Nastic A, Mochida H, Usui S, Otani N, Ochiya T, Wada T, Honda M, Kaneko S. Phase I clinical study of liver regenerative therapy for cirrhosis by intrahepatic arterial infusion of freshly isolated autologous adipose tissue-derived stromal/stem (regenerative) cell. Regen Ther. 2017;6:52–64.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Evarts RP, et al. A precursor-product relationship exists between oval cells and hepatocytes in rat liver. Carcinogenesis. 1987;8(11):1737–40.

    Article  CAS  PubMed  Google Scholar 

  82. Kubota H, Reid LM. Clonogenic hepatoblasts, common precursors for hepatocytic and biliary lineages, are lacking classical major histocompatibility complex class I antigen. Proc Natl Acad Sci U S A. 2000;97(22):12132–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Oertel M, et al. Repopulation of rat liver by fetal hepatoblasts and adult hepatocytes transduced ex vivo with lentiviral vectors. Hepatology. 2003;37(5):994–1005.

    Article  PubMed  Google Scholar 

  84. Cantz T, et al. Quantitative gene expression analysis reveals transition of fetal liver progenitor cells to mature hepatocytes after transplantation in uPA/RAG-2 mice. Am J Pathol. 2003;162(1):37–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Khan AA, et al. Human fetal liver-derived stem cell transplantation as supportive modality in the management of end-stage decompensated liver cirrhosis. Cell Transplant. 2010;19(4):409–18.

    Article  PubMed  Google Scholar 

  86. Cardinale V, et al. Transplantation of human fetal biliary tree stem/progenitor cells into two patients with advanced liver cirrhosis. BMC Gastroenterol. 2014;14:204.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Mahieu-Caputo D, et al. Repopulation of athymic mouse liver by cryopreserved early human fetal hepatoblasts. Hum Gene Ther. 2004;15(12):1219–28.

    Article  CAS  PubMed  Google Scholar 

  88. Semeraro R, et al. Multipotent stem/progenitor cells in the human foetal biliary tree. J Hepatol. 2012;57(5):987–94.

    Article  CAS  PubMed  Google Scholar 

  89. Riccio M, et al. The Fas/Fas ligand apoptosis pathway underlies immunomodulatory properties of human biliary tree stem/progenitor cells. J Hepatol. 2014;61(5):1097–105.

    Article  CAS  PubMed  Google Scholar 

  90. Roskams T, et al. Hepatic OV-6 expression in human liver disease and rat experiments: evidence for hepatic progenitor cells in man. J Hepatol. 1998;29(3):455–63.

    Article  CAS  PubMed  Google Scholar 

  91. Selden C, et al. Epithelial colonies cultured from human explanted liver in subacute hepatic failure exhibit hepatocyte, biliary epithelial, and stem cell phenotypic markers. Stem Cells. 2003;21(6):624–31.

    Article  PubMed  Google Scholar 

  92. Papp V, et al. Expansion of hepatic stem cell compartment boosts liver regeneration. Stem Cells Dev. 2014;23(1):56–65.

    Article  CAS  PubMed  Google Scholar 

  93. Dan YY, Yeoh GC. Liver stem cells: a scientific and clinical perspective. J Gastroenterol Hepatol. 2008;23(5):687–98.

    Article  PubMed  Google Scholar 

  94. Herrera MB, et al. Isolation and characterization of a stem cell population from adult human liver. Stem Cells. 2006;24(12):2840–50.

    Article  CAS  PubMed  Google Scholar 

  95. Wanless IR, Nakashima E, Sherman M. Regression of human cirrhosis. Morphologic features and the genesis of incomplete septal cirrhosis. Arch Pathol Lab Med. 2000;124(11):1599–607.

    CAS  PubMed  Google Scholar 

  96. Boulter L, et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat Med. 2012;18(4):572–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang Z, et al. Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. J Gastroenterol Hepatol. 2012;27(Suppl 2):112–20.

    Article  CAS  PubMed  Google Scholar 

  98. Kochat V, et al. Bone marrow stem-cell therapy for genetic and chronic liver diseases. Hepatol Int. 2014;8(2):166–78.

    Article  PubMed  Google Scholar 

  99. Baligar PN, Yadav Y, Mukhopadhyay A. Potential of bone marrow derived stem cells in treatment of genetic diseases of liver. Springer Science; 2007. p. 95–106.

    Google Scholar 

  100. Lagasse E, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med. 2000;6(11):1229–34.

    Article  CAS  PubMed  Google Scholar 

  101. Vassilopoulos G, Wang PR, Russell DW. Transplanted bone marrow regenerates liver by cell fusion. Nature. 2003;422(6934):901–4.

    Article  CAS  PubMed  Google Scholar 

  102. Muraca M, et al. Liver repopulation with bone marrow derived cells improves the metabolic disorder in the Gunn rat. Gut. 2007;56(12):1725–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Fattahi F, et al. Disease-corrected hepatocyte-like cells from familial hypercholesterolemia-induced pluripotent stem cells. Mol Biotechnol. 2013;54(3):863–73.

    Article  CAS  PubMed  Google Scholar 

  104. Avolio AW, et al. Liver transplantation for hepatitis B virus patients: long-term results of three therapeutic approaches. Transplant Proc. 2008;40(6):1961–4.

    Article  CAS  PubMed  Google Scholar 

  105. Zheng WP, et al. Biological effects of bone marrow mesenchymal stem cells on hepatitis B virus in vitro. Mol Med Rep. 2017;15(5):2551–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chiba T, et al. Successful clearance of hepatitis B virus after allogeneic stem cell transplantation: beneficial combination of adoptive immunity transfer and lamivudine. Eur J Haematol. 2003;71(3):220–3.

    Article  PubMed  Google Scholar 

  107. Park O, et al. In vivo consequences of liver-specific interleukin-22 expression in mice: implications for human liver disease progression. Hepatology. 2011;54(1):252–61.

    Article  PubMed  CAS  Google Scholar 

  108. Petta S, Craxi A. Current and future HCV therapy: do we still need other anti-HCV drugs? Liver Int. 2015;35(Suppl 1):4–10.

    Article  CAS  PubMed  Google Scholar 

  109. Qian X, et al. Exosomal MicroRNAs derived from umbilical mesenchymal stem cells inhibit hepatitis C virus infection. Stem Cells Transl Med. 2016;5(9):1190–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Xu H, et al. Mesenchymal stem cells relieve fibrosis of Schistosoma japonicum-induced mouse liver injury. Exp Biol Med (Maywood). 2012;237(5):585–92.

    Article  CAS  Google Scholar 

  111. Souza MC, et al. Mesenchymal stromal cell therapy attenuated lung and kidney injury but not brain damage in experimental cerebral malaria. Stem Cell Res Ther. 2015;6:102.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hotez PJ, et al. The neglected tropical diseases of Latin America and the Caribbean: a review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl Trop Dis. 2008;2(9):e300.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Jasmin, et al. Mesenchymal bone marrow cell therapy in a mouse model of chagas disease. Where do the cells go? PLoS Negl Trop Dis. 2012;6(12):e1971.

    Article  Google Scholar 

  114. Tura BR, et al. Multicenter randomized trial of cell therapy in cardiopathies – MiHeart study. Trials. 2007;8:2.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Hegab MH, et al. Therapeutic potential effect of bone marrow-derived mesenchymal stem cells on chronic liver disease in murine Schistosomiasis Mansoni. J Parasit Dis. 2018;42(2):277–86.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Chen Y, et al. Mesenchymal stem cells ameliorate experimental autoimmune hepatitis by activation of the programmed death 1 pathway. Immunol Lett. 2014;162(2 Pt B):222–8.

    Article  CAS  PubMed  Google Scholar 

  117. Wang F-S. Umbilical cord mesenchymal stem cells for patients with autoimmune hepatitis. 2013. https://clinicaltrials.gov/ct2/show/NCT01661842.

  118. Marra F, et al. Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol Med. 2008;14(2):72–81.

    Article  CAS  PubMed  Google Scholar 

  119. Ezquer M, et al. Intravenous administration of multipotent stromal cells prevents the onset of non-alcoholic steatohepatitis in obese mice with metabolic syndrome. J Hepatol. 2011;55(5):1112–20.

    Article  PubMed  Google Scholar 

  120. Wang H, et al. Compact bone-derived mesenchymal stem cells attenuate nonalcoholic steatohepatitis in a mouse model by modulation of CD4 cells differentiation. Int Immunopharmacol. 2017;42:67–73.

    Article  CAS  PubMed  Google Scholar 

  121. Lyall MJ, et al. Modelling non-alcoholic fatty liver disease in human hepatocyte-like cells. Philos Trans R Soc Lond Ser B Biol Sci. 2018;373(1750).

    Google Scholar 

  122. Hisada M, et al. Successful transplantation of reduced-sized rat alcoholic fatty livers made possible by mobilization of host stem cells. Am J Transplant. 2012;12(12):3246–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Levine P, et al. Molecular mechanisms of stem cell therapy in alcoholic liver disease. Dig Liver Dis. 2014;46(5):391–7.

    Article  CAS  PubMed  Google Scholar 

  124. Lyra AC, et al. Infusion of autologous bone marrow mononuclear cells through hepatic artery results in a short-term improvement of liver function in patients with chronic liver disease: a pilot randomized controlled study. Eur J Gastroenterol Hepatol. 2010;22(1):33–42.

    Article  PubMed  Google Scholar 

  125. Li M, et al. Co-stimulation of LPAR1 and S1PR1/3 increases the transplantation efficacy of human mesenchymal stem cells in drug-induced and alcoholic liver diseases. Stem Cell Res Ther. 2018;9(1):161.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Ghatak S, et al. Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice. Toxicol Appl Pharmacol. 2011;251(1):59–69.

    Article  CAS  PubMed  Google Scholar 

  127. Guo Y, et al. Current status and future prospects of mesenchymal stem cell therapy for liver fibrosis. J Zhejiang Univ Sci B. 2016;17(11):831–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Abdel Aziz MT, et al. Therapeutic potential of bone marrow-derived mesenchymal stem cells on experimental liver fibrosis. Clin Biochem. 2007;40(12):893–9.

    Article  CAS  PubMed  Google Scholar 

  129. Lorenzini S, Andreone P. Stem cell therapy for human liver cirrhosis: a cautious analysis of the results. Stem Cells. 2007;25(9):2383–4.

    Article  PubMed  Google Scholar 

  130. Karnoub AE, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449(7162):557–63.

    Article  CAS  PubMed  Google Scholar 

  131. Pai M, et al. Autologous infusion of expanded mobilized adult bone marrow-derived CD34+ cells into patients with alcoholic liver cirrhosis. Am J Gastroenterol. 2008;103(8):1952–8.

    Article  CAS  PubMed  Google Scholar 

  132. Amer ME, et al. Clinical and laboratory evaluation of patients with end-stage liver cell failure injected with bone marrow-derived hepatocyte-like cells. Eur J Gastroenterol Hepatol. 2011;23(10):936–41.

    Article  PubMed  Google Scholar 

  133. Jang YO, et al. Histological improvement following administration of autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: a pilot study. Liver Int. 2014;34(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  134. Yovchev MI, et al. Repopulation of the fibrotic/cirrhotic rat liver by transplanted hepatic stem/progenitor cells and mature hepatocytes. Hepatology. 2014;59(1):284–95.

    Article  CAS  PubMed  Google Scholar 

  135. Fang B, et al. Systemic infusion of FLK1(+) mesenchymal stem cells ameliorate carbon tetrachloride-induced liver fibrosis in mice. Transplantation. 2004;78(1):83–8.

    Article  CAS  PubMed  Google Scholar 

  136. Zhao DC, et al. Bone marrow-derived mesenchymal stem cells protect against experimental liver fibrosis in rats. World J Gastroenterol. 2005;11(22):3431–40.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Rasmusson I, et al. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Exp Cell Res. 2005;305(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  138. Di Nicola M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99(10):3838–43.

    Article  PubMed  Google Scholar 

  139. Parekkadan B, et al. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One. 2007;2(9):e941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Parekkadan B, et al. Immunomodulation of activated hepatic stellate cells by mesenchymal stem cells. Biochem Biophys Res Commun. 2007;363(2):247–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. van Poll D, et al. Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatology. 2008;47(5):1634–43.

    Article  PubMed  CAS  Google Scholar 

  142. Volarevic V, et al. Concise review: therapeutic potential of mesenchymal stem cells for the treatment of acute liver failure and cirrhosis. Stem Cells. 2014;32(11):2818–23.

    Article  CAS  PubMed  Google Scholar 

  143. Volarevic V, et al. Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells. 2011;29(1):5–10.

    Article  CAS  PubMed  Google Scholar 

  144. Liu YC, et al. Macrophage polarization in inflammatory diseases. Int J Biol Sci. 2014;10(5):520–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Xagorari A, et al. Protective effect of mesenchymal stem cell-conditioned medium on hepatic cell apoptosis after acute liver injury. Int J Clin Exp Pathol. 2013;6(5):831–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Rani S, et al. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther. 2015;23(5):812–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Li T, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev. 2013;22(6):845–54.

    Article  CAS  PubMed  Google Scholar 

  148. Yan Y, et al. hucMSC exosome-derived GPX1 is required for the recovery of hepatic oxidant injury. Mol Ther. 2017;25(2):465–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Reis M, et al. Recent developments in cellular immunotherapy for HSCT-associated complications. Front Immunol. 2016;7:500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Wen S, et al. Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells. Leukemia. 2016;30(11):2221–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitra Zagoura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zagoura, D. (2019). Stem Cell Therapy for Liver Diseases. In: Gazouli, M., Theodoropoulos, G. (eds) Digestive System Diseases. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-030-11965-2_5

Download citation

Publish with us

Policies and ethics