Architectured Materials in Nature and Engineering pp 173-193 | Cite as
Topological Optimization with Interfaces
- 941 Downloads
Abstract
Design of architectured materials and structures, whether in nature or in engineering, often relies on forms of optimization. In nature, controlling architecture or spatial heterogeneity is usually adaptive and incremental. Naturally occuring architectured materials exploit heterogeneity with typically graded interfaces, smoothly transitioning across properties and scales in the pursuit of performance and longevity. This chapter explores an engineering tool, topology optimization, that is at the frontier of designing architectured materials and structures. Topology optimization offers a mathematical framework to determine the most efficient material layout for prescribed constraints and loading conditions. In engineering, topology optimization is identifying designs with interfaces, materials, manufacturing methods, and functionalities unavailable to the natural world. The particular focus is on the variety of roles that interfaces may play in advancing architectured materials and structures with topology optimization.
Notes
Acknowledgements
This material is, in part, based upon work supported by the National Science Foundation under Grant No. 1538125.
References
- 1.M. Ashby, Designing architectured materials. Scr. Mater. 68(1), 4–7 (2013)CrossRefGoogle Scholar
- 2.M. Ashby, Y. Brechet, Designing hybrid materials. Acta Mater. 51(19), 5801–5821 (2003)CrossRefGoogle Scholar
- 3.S. Torquato, Optimal design of heterogeneous materials. Ann. Rev. Mater. Res. 40, 101–129 (2010)CrossRefGoogle Scholar
- 4.M. Bendsoe, O. Sigmund, in Topology Optimization: Theory, Methods and Applications (Springer, 2004)Google Scholar
- 5.D. Wolf, J. Jaszczak, in Materials Interfaces: Atomic-level Structure and Properties (1992)Google Scholar
- 6.G. Allaire, Conception optimale de structures, vol. 58, in Mathématiques & Applications (Springer-Verlag, Berlin, 2007)Google Scholar
- 7.P. Christensen, A. Klarbring, in An Introduction to Structural Optimization, vol. 153. (Springer, 2009)Google Scholar
- 8.J.D. Deaton, R.V. Grandhi, A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multi. Optim. 49(1), 1–38 (2014)CrossRefGoogle Scholar
- 9.G. Allaire, E. Bonnetier, G. Francfort, F. Jouve, Shape optimization by the homogenization method. Numer. Math. 76(1), 27–68 (1997)CrossRefGoogle Scholar
- 10.M. Bendsøe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71(2), 197–224 (1988)CrossRefGoogle Scholar
- 11.L. Gibiansky and A. Cherkaev, Design of composite plates of extremal rigidity, in Topics in the Mathematical Modelling of Composite Materials (Springer, 1997), pp. 95–137Google Scholar
- 12.R. Kohn, G. Strang, Optimal design and relaxation of variational problems, I. Commun. Pure Appl. Math. 39(1), 113–137 (1986a)CrossRefGoogle Scholar
- 13.R. Kohn, G. Strang, Optimal design and relaxation of variational problems, II. Commun. Pure Appl. Math. 39(2), 139–182 (1986b)CrossRefGoogle Scholar
- 14.R. Kohn, G. Strang, Optimal design and relaxation of variational problems, III. Commun. Pure Appl. Math. 39(3), 353–377 (1986c)CrossRefGoogle Scholar
- 15.F. Murat, L. Tartar, Calcul des variations et homogénéisation. Les méthodes de lhomogénéisation: théorie et applications en physique 57, 319–369 (1985)Google Scholar
- 16.S. Osher, J. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)CrossRefGoogle Scholar
- 17.J. Sethian, A. Wiegmann, Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163(2), 489–528 (2000)CrossRefGoogle Scholar
- 18.G. Allaire, F. Jouve, A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194(1), 363–393 (2004)CrossRefGoogle Scholar
- 19.M. Wang, X. Wang, D. Guo, A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192(1), 227–246 (2003)CrossRefGoogle Scholar
- 20.A. Christiansen, M. Nobel-Jørgensen, N. Aage, O. Sigmund, J. Bærentzen, Topology optimization using an explicit interface representation, in Structural and Multidisciplinary Optimization (2013), pp. 1–13Google Scholar
- 21.L. Blank, M. Farshbaf-Shaker, H. Garcke, C. Rupprecht, V. Styles, Multi-material phase field approach to structural topology optimization, in Trends in PDE Constrained Optimization (Springer, 2014), pp. 231–246Google Scholar
- 22.S. Zhou, M. Wang, Multimaterial structural topology optimization with a generalized cahn-hilliard model of multiphase transition. Struct. Multi. Optim. 33(2), 89–111 (2007)CrossRefGoogle Scholar
- 23.O. Querin, G. Steven, Y. Xie, Evolutionary structural optimisation (eso) using a bidirectional algorithm. Eng. Comput. 15(8), 1031–1048 (1998)CrossRefGoogle Scholar
- 24.A. Baumgartner, L. Harzheim, C. Mattheck, Sko (soft kill option): the biological way to find an optimum structure topology. Int. J. Fatigue 14(6), 387–393 (1992)CrossRefGoogle Scholar
- 25.C. Mattheck, Design and growth rules for biological structures and their application to engineering. Fatigue Fract. Eng. Mater. Struct. 13(5), 535–550 (1990)CrossRefGoogle Scholar
- 26.O. Sigmund, On the usefulness of non-gradient approaches in topology optimization. Struct. Multi. Optim. 43(5), 589–596 (2011)CrossRefGoogle Scholar
- 27.J. Guest, Topology optimization with multiple phase projection. Comput. Methods Appl. Mech. Eng. 199(1), 123–135 (2009)CrossRefGoogle Scholar
- 28.A. Clausen, N. Aage, O. Sigmund, Topology optimization of coated structures and material interface problems. Comput. Methods Appl. Mech. Eng. 290, 524–541 (2015)CrossRefGoogle Scholar
- 29.T. Abballe, M. Albertelli, G. Allaire, A. Caron, P. Conraux, L. Dall’Olio, C. Dapogny, C. Dobrzynski, B. Jeannin, F. Jouve, et al., Rodin Project, Topology Optimization 2.0? (2015). HAL preprint: https://hal.archives-ouvertes.fr/hal-01237051
- 30.F. Murat, J. Simon, Etude de problèmes d’optimal design. Optim. Tech. Model. Optim. Serv. Man Part 2, 54–62 (1976)CrossRefGoogle Scholar
- 31.J. Simon, F. Murat, in Sur le contrôle par un domaine géométrique. Publication 76015 du Laboratoire d’Analyse Numérique de l’Université Paris VI, (76015):222 pages (1976)Google Scholar
- 32.B. Merriman, J.K. Bence, S.J. Osher, Motion of multiple junctions: a level set approach. J. Comput. Phys. 112(2), 334–363 (1994)CrossRefGoogle Scholar
- 33.M. Wang, X. Wang, Color level sets: a multi-phase method for structural topology optimization with multiple materials. Comput. Methods Appl. Mech. Eng. 193(6), 469–496 (2004)CrossRefGoogle Scholar
- 34.G. Allaire, C. Dapogny, G. Delgado, G. Michailidis, Mutli-phase structural optimization via a level-set method. ESAIM Control Optim. Calc. Var. 20(2), 576–611 (2014). https://doi.org/10.1051/cocv/2013076CrossRefGoogle Scholar
- 35.O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer Series in Computational Physics. (Springer-Verlag, New York, 1984)Google Scholar
- 36.J. Sokołowski and J.-P. Zolésio. Introduction to Shape Optimization, vol. 16, Springer Series in Computational Mathematics. (Springer-Verlag, Berlin, 1992). Shape sensitivity analysisGoogle Scholar
- 37.S. Osher, R. Fedkiw, Level set methods and dynamic implicit surfaces, in Applied Mathematical Sciences,vol. 153 (Springer-Verlag, New York, 2003)Google Scholar
- 38.J. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (Cambridge University Press, Cambridge, 1999)Google Scholar
- 39.G. Allaire, C. Dapogny, P. Frey, A mesh evolution algorithm based on the level set method for geometry and topology optimization. Struct. Multi. Optim. 48(4), 711–715 (2013)CrossRefGoogle Scholar
- 40.Q. Xia, T. Shi, S. Liu, M. Wang, A level set solution to the stress-based structural shape and topology optimization. Comput. Struct. 9091, 55–64 (2012)CrossRefGoogle Scholar
- 41.L. Ambrosio, G. Buttazzo, An optimal design problem with perimeter penalization. Calc. Var. Partial. Differ. Equ. 1(1), 55–69 (1993)CrossRefGoogle Scholar
- 42.C. Dapogny, Optimisation de formes, méthode des lignes de niveaux sur maillages non structurés et évolution de maillages. Ph.D. thesis, Université Pierre et Marie Curie-Paris VI, 2013. Available at http://tel.archives-ouvertes.fr/tel-00916224
- 43.G. Allaire, F. Jouve, G. Michailidis, Thickness control in structural optimization via a level set method. Struct. Multi. Optim. 53(6), 1349–1382 (2016)CrossRefGoogle Scholar
- 44.F. Feppon, Design and Optimization for Wear of Bi-material Composite Surfaces. Master’s thesis, Ecole Polytechnique, Promotion X2012, 2015Google Scholar
- 45.F. Feppon, G. Michailidis, M. Sidebottom, G. Allaire, B. Krick, N. Vermaak, Introducing a level-set based shape and topology optimization method for the wear of composite materials with geometric constraints. Struct. Multi. Optim. 55(2), 547–568 (2017). https://doi.org/10.1007/s00158-016-1512-4CrossRefGoogle Scholar
- 46.N. Vermaak, G. Michailidis, G. Parry, R. Estevez, G. Allaire, Y. Bréchet, Material interface effects on the topology optimizationof multi-phase structures using a level set method. Struct. Multi. Optim. 50(4), 623–644 (2014)CrossRefGoogle Scholar
- 47.O. Sigmund, Tailoring materials with prescribed elastic properties. Mech. Mater. 20(4), 351–368 (1995)CrossRefGoogle Scholar
- 48.A. Faure, G. Michailidis, G. Parry, N. Vermaak, R. Estevez, Design of thermoelastic multi-material structures with graded interfaces using topology optimization. Struct. Multi. Optim. 56(4), 823–837 (2017). https://doi.org/10.1007/s00158-017-1688-2
- 49.A. Clausen, N. Aage, O. Sigmund, Exploiting additive manufacturing infill in topology optimization for improved buckling load. Engineering 2(2), 250–257 (2016)CrossRefGoogle Scholar
- 50.P. Zhang, J. Liu, A. To, Role of anisotropic properties on topology optimization of additive manufactured load bearing structures. Scripta Mater. 135, 148–152 (2016)CrossRefGoogle Scholar