Skip to main content

Computational Homogenization of Architectured Materials

  • Chapter
  • First Online:
Architectured Materials in Nature and Engineering

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 282))

Abstract

Architectured materials involve geometrically engineered distributions of microstructural phases at a scale comparable to the scale of the component, thus calling for new models in order to determine the effective properties of materials. The present chapter aims at providing such models, in the case of mechanical properties. As a matter of fact, one engineering challenge is to predict the effective properties of such materials; computational homogenization using finite element analysis is a powerful tool to do so. Homogenized behavior of architectured materials can thus be used in large structural computations, hence enabling the dissemination of architectured materials in the industry. Furthermore, computational homogenization is the basis for computational topology optimization which will give rise to the next generation of architectured materials. This chapter covers the computational homogenization of periodic architectured materials in elasticity and plasticity, as well as the homogenization and representativity of random architectured materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.zset-software.com/.

References

  1. M. Abouaf, J.-L. Chenot, G. Raisson, P. Bauduin, Finite element simulation of hot isostatic pressing of metal powders. Int. J. Numer. Methods Eng. 25, 191–212 (1988)

    Article  Google Scholar 

  2. A. Alderson, K.L. Alderson, D. Attard, K.E. Evans, R. Gatt, J.N. Grima, W. Miller, N. Ravirala, C.W. Smith, K. Zied, Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Compos. Sci. Technol. 70(7), 1042–1048 (2010)

    Article  Google Scholar 

  3. G. Allaire, Shape Optimization by the Homogenization Method (Springer, Berlin, 2002)

    Book  Google Scholar 

  4. R.F. Almgren, An isotropic three-dimensional structure with Poisson’s ratio-1. J. Elast. 15, 427–430 (1985)

    Article  Google Scholar 

  5. H. Altenbach, V. Eremeyev (eds.), Generalized Continua from the Theory to Engineering Applications (Springer, Berlin, 2013)

    Google Scholar 

  6. H. Altendorf, D. Jeulin, F. Willot, Influence of the fiber geometry on the macroscopic elastic and thermal properties. Int. J. Solids Struct. 51(23–24), 3807–3822 (2014)

    Article  Google Scholar 

  7. J.C. Alvarez Elipe, A. Diaz Lantada, Comparative study of auxetic geometries by means of computer-aided design and engineering. Smart Mater. Struct. 21, 105004 (2012)

    Google Scholar 

  8. E. Andreassen, B. Lazarov, O. Sigmund, Design of manufacturable 3d extremal elastic microstructure. Mech. Mater. 69(1), 1–10 (2014)

    Article  Google Scholar 

  9. U. Andreaus, F. dell’Isola, I. Giorgio, L. Placidi, T. Lekszycki, N.L. Rizzi, Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity. Int. J. Eng. Sci. 108, 34–50 (2016)

    Article  Google Scholar 

  10. A. Asadpoure, M. Tootkaboni, L. Valdevit, Topology optimization of multiphase architected materials for energy dissipation. Comput. Methods Appl. Mech. Eng. 325, 314–329 (2017)

    Article  Google Scholar 

  11. M.F. Ashby, Y. Bréchet, Designing hybrid materials. Acta Mater. 51, 5801–5821 (2003)

    Article  CAS  Google Scholar 

  12. N. Auffray, Analytical expressions for odd-order anisotropic tensor dimension. C. R. Mécaniques 342(5), 284–291 (2014)

    Article  Google Scholar 

  13. N. Auffray, J. Dirrenberger, G. Rosi, A complete description of bi-dimensional anisotropic strain-gradient elasticity. Int. J. Solids Struct. 69–70, 195–210 (2015)

    Article  Google Scholar 

  14. J.-L. Auriault, Heterogeneous medium is an equivalent macroscopic description possible? Int. J. Eng. Sci. 29(7), 785–795 (1991)

    Article  Google Scholar 

  15. S. Babaee, J. Shim, J. Weaver, E. Chen, N. Patel, K. Bertoldi, 3d soft metamaterials with negative poisson’s ratio. Adv. Mater. 25(36), 5044–5049 (2013)

    Article  CAS  Google Scholar 

  16. A. Bacigalupo, L. Gambarotta, Homogenization of periodic hexa- and tetrachiral cellular solids. Compos. Struct. 116, 461–476 (2014)

    Article  Google Scholar 

  17. X. Badiche, S. Forest, T. Guibert, Y. Bienvenu, J.-D. Bartout, P. Ienny, M. Croset, H. Bernet, Mechanical properties and non-homogeneous deformation of open-cell nickel foams: application of the mechanics of cellular solids and of porous materials. Mater. Sci. Eng. A 289, 276–288 (2000)

    Article  Google Scholar 

  18. E. Bafekrpour, A. Dyskin, E. Pasternak, A. Molotnikov, Y. Estrin, Internally architectured materials with directionally asymmetric friction. Sci. Rep. 5, 10732 (2015)

    Article  CAS  Google Scholar 

  19. E. Bafekrpour, A. Molotnikov, J.C. Weaver, Y. Brechet, Y. Estrin, Responsive materials: a novel design for enhanced machine-augmented composites. Sci. Rep. 4, 3783 (2014)

    Article  CAS  Google Scholar 

  20. C. Barbier, R. Dendievel, D. Rodney, Numerical study of 3D-compressions of entangled materials. Comput. Mater. Sci. 45, 593–596 (2009a)

    Article  CAS  Google Scholar 

  21. C. Barbier, R. Dendievel, D. Rodney, Role of friction in the mechanics of nonbounded fibrous materials. Phys. Rev. E 80(1), 016115 (2009b)

    Article  CAS  Google Scholar 

  22. S. Bargmann, B. Klusemann, J. Markmann, J.E. Schnabel, K. Schneider, C. Soyarslan, J. Wilmers, Generation of 3d representative volume elements for heterogeneous materials: a review. Prog. Mater. Sci. 96, 322–384 (2018)

    Article  Google Scholar 

  23. R.J. Bathurst, L. Rothenburg, Note on a random isotropic granular material with negative Poisson’s ratio. Int. J. Eng. Sci. 26(4), 373–383 (1988)

    Article  Google Scholar 

  24. M. Bendsøe, O. Sigmund, Topology Optimization (Springer, Berlin, 2004)

    Book  Google Scholar 

  25. I. Benedetti, F. Barbe, Modelling polycrystalline materials: an overview of three-dimensional grain-scale mechanical models. J. Multiscale Model. 5(1), 1350002 (2013)

    Article  CAS  Google Scholar 

  26. M.J. Beran, Statistical Continuum Theories (Wiley, Hoboken, 1968)

    Book  Google Scholar 

  27. C. Berdin, Z.Y. Yao, S. Pascal, Internal stresses in polycrystalline zirconia: microstructure effects. Comput. Mater. Sci. 70, 140–144 (2013)

    Article  CAS  Google Scholar 

  28. K. Bertoldi, P. Reis, S. Willshaw, T. Mullin, Negative poisson’s ratio behavior induced by an elastic instability. Adv. Mater. 22(3), 361–366 (2010)

    Article  CAS  Google Scholar 

  29. J. Besson, G. Cailletaud, J.-L. Chaboche, S. Forest, M. Blétry, Non-Linear Mechanics of Materials, Volume 167 of Solid Mechanics and Its Applications (Springer, Berlin, 2010)

    Google Scholar 

  30. D. Bigoni, W. Drugan, Analytical derivation of cosserat moduli via homogenization of heterogeneous elastic materials. J. Appl. Mech. 74, 741–753 (2007)

    Article  Google Scholar 

  31. A. Bironeau, J. Dirrenberger, C. Sollogoub, G. Miquelard-Garnier, S. Roland, Evaluation of morphological representative sample sizes for nanolayered polymer blends. J. Microsc. 264(1), 48–58 (2016)

    Article  CAS  Google Scholar 

  32. M. Bornert, T. Bretheau, P. Gilormini, Homogénéisation en mécanique des matériaux, Tome 1 : Matériaux aléatoires élastiques et milieux périodiques. (Hermès, 2001)

    Google Scholar 

  33. O. Bouaziz, Y. Bréchet, J.D. Embury, Heterogeneous and architectured materials: a possible strategy for design of structural materials. Adv. Eng. Mater. 10(1–2), 24–36 (2008)

    Article  CAS  Google Scholar 

  34. O. Bouaziz, J.P. Masse, S. Allain, L. Orgéas, P. Latil, Compression of crumpled aluminum thin foils and comparison with other cellular materials. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 570, 1–7 (2013)

    Article  CAS  Google Scholar 

  35. Y. Bréchet, J.D. Embury, Architectured materials: expanding materials space. Scripta Mater. 68(1), 1–3 (2013)

    Article  CAS  Google Scholar 

  36. H.J. Bunge, Texture Analysis in Materials Science (Butterworths, 1982)

    Google Scholar 

  37. B.D. Caddock, K.E. Evans, Microporous materials with negative Poisson’s ratios: I. Microstructure and mechanical properties. J. Phys. D: Appl. Phys. 22, 1877–1882 (1989)

    Google Scholar 

  38. G. Cailletaud, S. Forest, D. Jeulin, F. Feyel, I. Galliet, V. Mounoury, S. Quilici, Some elements of microstructural mechanics. Comput. Mater. Sci. 27, 351–374 (2003)

    Article  Google Scholar 

  39. G. Cailletaud, D. Jeulin, P. Rolland, Size effect on elastic properties of random composites. Eng. Comput. 11(2), 99–110 (1994)

    Article  Google Scholar 

  40. O. Caty, E. Maire, R. Bouchet, Fatigue of metal hollow spheres structures. Adv. Eng. Mater. 10(3), 179–184 (2008)

    Article  CAS  Google Scholar 

  41. V.J. Challis, A.P. Roberts, A.H. Wilkins, Design of three dimensional isotropic microstructures for maximized stiffness and conductivity. Int. J. Solids Struct. 45, 4130–4146 (2008)

    Article  Google Scholar 

  42. C. Chateau, L. Gélébart, M. Bornert, J. Crépin, D. Caldemaison, Multiscale approach of mechanical behaviour of sic/sic composites: elastic behaviour at the scale of the tow. Tech. Mechanik 30(1–3), 45–55 (2010)

    Google Scholar 

  43. I. Chekkal, M. Bianchi, C. Remillat, F.-X. Becot, L. Jaouen, F. Scarpa, Vibro-acoustic properties of auxetic open cell foam: model and experimental results. Acta Acustica united Acustica 96(2), 266–274 (2010)

    Article  Google Scholar 

  44. C.P. Chen, R.S. Lakes, Micromechanical analysis of dynamic behavior of conventional and negative Poisson’s ratio foams. J. Eng. Mater. Technol. 118(3), 285–288 (1996)

    Article  CAS  Google Scholar 

  45. Y. Chen, X.N. Liu, G.K. Hu, Q.P. Sun, Q.S. Zheng, Micropolar continuum modelling of bi-dimensional tetrachiral lattices. Proc. R. Soc. A Math. Phys. Eng. Sci. 470(2165), 20130734 (2014)

    Google Scholar 

  46. J.B. Choi, R.S. Lakes, Design of a fastener based on negative Poisson’s ratio foam. Cell. Polym. 10(3), 205–212 (1991)

    CAS  Google Scholar 

  47. L. Courtois, E. Maire, M. Perez, D. Rodney, O. Bouaziz, Y. Bréchet, Mechanical properties of monofilament entangled materials. Adv. Eng. Mater. 14(12), 1128–1133 (2012)

    Article  CAS  Google Scholar 

  48. A.S. Dalaq, D.W. Abueidda, R.K.A. Al-Rub, I.M. Jasiuk, Finite element prediction of effective elastic properties of interpenetrating phase composites with architectured 3d sheet reinforcements. Int. J. Solids Struct. 83, 169–182 (2016)

    Article  Google Scholar 

  49. L. Decker, D. Jeulin, I. Tovena, 3d morphological analysis of the connectivity of a porous medium. Acta Stereologica 17(1), 107–112 (1998)

    Google Scholar 

  50. C. Delisée, D. Jeulin, F. Michaud, Morphological characterization and porosity in 3D of cellulosic fibrous materials. C.-R. de l’Acad. des Sci. Serie IIb : Mécanique 329(3), 179–185 (2001)

    Google Scholar 

  51. F. dell’Isola, A. Della Corte, I. Giorgio, Higher-gradient continua: The legacy of piola, mindlin, sedov and toupin and some future research perspectives. Math. Mech. Solids 22(4), 852–872 (2017)

    Google Scholar 

  52. V.S. Deshpande, N.A. Fleck, Isotropic constitutive models for metallic foams. J. Mech. Phys. Solids 48, 1253–1283 (2000)

    Article  CAS  Google Scholar 

  53. F. di Paola, Modélisation multi-échelles du comportement thermo-élastique de composites à particules sphériques. Ph.D. thesis, Ecole Centrale Paris, 2010

    Google Scholar 

  54. J. Dirrenberger, Effective properties of architectured materials. Ph.D. thesis, MINES-ParisTech, Paris, 2012

    Google Scholar 

  55. J. Dirrenberger, S. Forest, D. Jeulin, Elastoplasticity of auxetic materials. Comput. Mater. Sci. 64, 57–61 (2012)

    Article  Google Scholar 

  56. J. Dirrenberger, S. Forest, D. Jeulin, Effective elastic properties of auxetic microstructures: anisotropy and structural applications. Int. J. Mech. Mater. Des. 9(1), 21–33 (2013)

    Article  Google Scholar 

  57. J. Dirrenberger, S. Forest, D. Jeulin, Towards gigantic RVE sizes for stochastic fibrous networks. Int. J. Solids Struct. 51(2), 359–376 (2014)

    Article  Google Scholar 

  58. J. Dirrenberger, S. Forest, D. Jeulin, C. Colin, Homogenization of periodic auxetic materials, in 11th International Conference on the Mechanical Behavior of Materials (ICM11) Procedia Engineering, vol. 10, pp. 1847–1852 (2011)

    Google Scholar 

  59. L. Djumas, A. Molotnikov, G.P. Simon, Y. Estrin, Enhanced mechanical performance of bio-inspired hybrid structures utilising topological interlocking geometry. Sci. Rep. 6, 26706 (2016)

    Article  CAS  Google Scholar 

  60. L. Djumas, G.P. Simon, Y. Estrin, A. Molotnikov, Deformation mechanics of non-planar topologically interlocked assemblies with structural hierarchy and varying geometry. Sci. Rep. 7(1), 11844 (2017)

    Article  CAS  Google Scholar 

  61. W.J. Drugan, J.R. Willis, A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J. Mech. Phys. Solids 44(4), 497–524 (1996)

    Article  CAS  Google Scholar 

  62. A.V. Dyskin, Y. Estrin, A.J. Kanel-Belov, E. Pasternak, Toughening by fragmentation–how topology helps. Adv. Eng. Mater. 3, 885–888 (2001)

    Article  CAS  Google Scholar 

  63. D. Embury, O. Bouaziz, Steel-based composites: driving forces and classifications. Ann. Rev. Mater. Res. 40, 213–241 (2010)

    Article  CAS  Google Scholar 

  64. J. Escoda, D. Jeulin, F. Willot, C. Toulemonde, Three-dimensional morphological modelling of concrete using multiscale poisson polyhedra. J. Microsc. 258(1), 31–48 (2015)

    Article  CAS  Google Scholar 

  65. Y. Estrin, A.V. Dyskin, E. Pasternak, Topological interlocking as a material design concept. Mater. Sci. Eng. C 31, 1189–1194 (2011)

    Article  CAS  Google Scholar 

  66. Y. Estrin, A.V. Dyskin, E. Pasternak, H.C. Khor, A.J. Kanel-Belov, Topological interlocking of protective tiles for the space shuttle. Philos. Mag. Lett. 83, 351–355 (2003)

    Article  CAS  Google Scholar 

  67. K.E. Evans, The design of doubly curved sandwich panels with honeycomb cores. Compos. Struct. 17(2), 95–111 (1991)

    Article  Google Scholar 

  68. K.E. Evans, A. Alderson, Auxetic materials: Functional materials and structures from lateral thinking!. Adv. Mater. 12(9), 617–628 (2000)

    Article  CAS  Google Scholar 

  69. K.E. Evans, M.A. Nkansah, I.J. Hutchinson, S.C. Rogers, Molecular network design. Nature 353, 124 (1991)

    Article  CAS  Google Scholar 

  70. A. Fallet, P. Lhuissier, L. Salvo, Y. Bréchet, Mechanical behaviour of metallic hollow spheres foam. Adv. Eng. Mater. 10(9), 858–862 (2008)

    Article  CAS  Google Scholar 

  71. A. Faure, G. Michailidis, G. Parry, N. Vermaak, R. Estevez, Design of thermoelastic multi-material structures with graded interfaces using topology optimization. Struct. Multi. Optim. 56(4), 823–837 (2017)

    Article  Google Scholar 

  72. Y. Feng, T. Siegmund, E. Habtour, J. Riddick, Impact mechanics of topologically interlocked material assemblies. Int. J. Impact Eng. 75, 140–149 (2015)

    Article  Google Scholar 

  73. J. Fish, V. Filonova, D. Fafalis, Computational continua revisited. Int. J. Numer. Methods Eng. 102(3–4), 332–378 (2015)

    Article  Google Scholar 

  74. J. Fish, S. Kuznetsov, Computational continua. Int. J. Numer. Methods Eng. 84, 774–802 (2010)

    Article  Google Scholar 

  75. S. Forest, Mechanics of Generalized Continua and Heterogeneous Materials (Les Presses de lEcole des Mines de Paris, 2005)

    Google Scholar 

  76. S. Forest, J.-S. Blazy, Y. Chastel, F. Moussy, Continuum modeling of strain localization phenomena in metallic foams. J. Mater. Sci. 40, 5903–5910 (2005)

    Article  CAS  Google Scholar 

  77. D. François, A. Pineau, A. Zaoui, Mechanical Behaviour of Materials, Volume 1: Micro- and Macroscopic Constitutive Behaviour, volume 180 of Solid Mechanics and Its Applications (Springer, Berlin, 2012)

    Google Scholar 

  78. A.J. Freeman, Materials by design and the exciting role of quantum computation/simulation. J. Comput. Appl. Math. 149(1), 27–56 (2002)

    Article  Google Scholar 

  79. F. Fritzen, S. Forest, D. Kondo, T. Böhlke, Computational homogenization of porous materials of green type. Comput. Mech. 52(1), 121–134 (2013)

    Article  Google Scholar 

  80. N. Gaspar, X.J. Ren, C.W. Smith, J.N. Grima, K.E. Evans, Novel honeycombs with auxetic behaviour. Acta Mater. 53, 2439–2445 (2005)

    Article  CAS  Google Scholar 

  81. M.G.D. Geers, J. Yvonnet, Multiscale modeling of microstructure property relations. MRS Bull. 41(8), 610–616 (2016)

    Article  Google Scholar 

  82. L. Gélébart, C. Chateau, M. Bornert, Conditions aux limites mixtes normales. In 19ème Congrès Français de Mécanique, 24–28 August 2009, Marseille (2009)

    Google Scholar 

  83. A. Ghaedizadeh, J. Shen, X. Ren, Y.M. Xie, Tuning the performance of metallic auxetic metamaterials by using buckling and plasticity. Materials 9(54), 1–17 (2016)

    Google Scholar 

  84. I.M. Gitman, H. Askes, L.J. Sluys, Representative volume: Existence and size determination. Eng. Fract. Mech. 74, 2518–2534 (2007)

    Article  Google Scholar 

  85. R.J. Green, A plasticity theory for porous solids. International J. Mech. Sci. 14, 215–224 (1972)

    Article  Google Scholar 

  86. J.K. Guest, J.H. Prévost, Optimizing multifunctional materials: design of microstructures for maximized stiffness and fluid permeability. Int. J. Solids Struct. 43(22–23), 7028–7047 (2006)

    Article  Google Scholar 

  87. L. Guiducci, P. Fratzl, Y. Bréchet, J. Dunlop, Pressurized honeycombs as soft-actuators: a theoretical study. J. R. Soc. Interface 11, 20140458 (2014)

    Article  Google Scholar 

  88. Z. Hashin, Analysis of composite materials–a survey. J. Appl. Mech. 50, 481–505 (1983)

    Article  Google Scholar 

  89. H. Hatami-Marbini, R.C. Picu, Heterogeneous long-range correlated deformation of semiflexible random fiber networks. Phys. Rev. E 80(4) (2009)

    Google Scholar 

  90. S. Hazanov, Hill condition and overall properties of composites. Arch. Appl. Mech. 68, 385–394 (1998)

    Article  Google Scholar 

  91. S. Hazanov, C. Huet, Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume. J. Mech. Phys. Solids 42(12), 1995–2011 (1994)

    Article  Google Scholar 

  92. J. Henry, S. Pimenta, Increasing damage tolerance in composites using hierarchical brick-and-mortar microstructures. J. Mech. Phys. Solids 118, 322–340 (2018)

    Article  CAS  Google Scholar 

  93. C.T. Herakovich, Composite laminates with negative through-the-thickness poisson’s ratios. J. Compos. Mater. 18(5), 447–455 (1984)

    Article  Google Scholar 

  94. R. Hill, Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)

    Article  Google Scholar 

  95. R. Hill, The essential structure of constitutive laws for metal composites and polycrystals. J. Mech. Phys. Solids 15, 79–95 (1967)

    Article  CAS  Google Scholar 

  96. J.B. Hopkins, L.A. Shaw, T.H. Weisgraber, G.R. Farquar, C.D. Harvey, C.M. Spadaccini, Design of nonperiodic microarchitectured materials that achieve graded thermal expansions. J. Mech. Rob. 8(5), 051010 (2016)

    Article  Google Scholar 

  97. A. Hor, N. Saintier, C. Robert, T. Palin-Luc, F. Morel, Statistical assessment of multiaxial hcf criteria at the grain scale. Int. J. Fatigue 67, 151–158 (2014)

    Article  Google Scholar 

  98. C. Huet, Application of variational concepts to size effects in elastic heterogeneous bodies. J. Mech. Phys. Solids 38(6), 813–841 (1990)

    Article  Google Scholar 

  99. C. Huet, An integrated micromechanics and statistical continuum thermodynamics approach for studying the fracture behaviour of microcracked heterogeneous materials with delayed response. Eng. Fracture Mech. 58(5–6), 459–556 (1997)

    Article  Google Scholar 

  100. T.P. Hughes, A. Marmier, K.E. Evans, Auxetic frameworks inspired by cubic crystals. Int. J. Solids Struct. 47, 1469–1476 (2010)

    Article  CAS  Google Scholar 

  101. A. Iltchev, V. Marcadon, S. Kruch, S. Forest, Computational homogenisation of periodic cellular materials: application to structural modelling. Int. J. Mech. Sci. 93, 240–255 (2015)

    Article  Google Scholar 

  102. R. Jänicke, H. Sehlhorst, A. Dster, S. Diebels, Micromorphic two-scale modelling of periodic grid structures. Int. J. Multiscale Comput. Eng. 11, 161–176 (2013)

    Article  Google Scholar 

  103. R. Jänicke, H. Steeb, Minimal loading conditions for higher-order numerical homogenisation schemes. Arch. Appl. Mech. 82(8), 1075–1088 (2012)

    Article  Google Scholar 

  104. A. Jean, G.C. Engelmayr, Finite element analysis of an accordion-like honeycomb scaffold for cardiac tissue engineering. J. Biomech. 43, 3035–3043 (2010)

    Article  Google Scholar 

  105. A. Jean, D. Jeulin, S. Forest, S. Cantournet, F. N’Guyen, A multiscale microstructure model of carbon black distribution in rubber. J. Microsc. 241(3), 243–260 (2011a)

    Article  CAS  Google Scholar 

  106. A. Jean, F. Willot, S. Cantournet, S. Forest, D. Jeulin, Large-scale computations of effective elastic properties of rubber with carbon black fillers. Int. J. Multiscale Comput. Eng. 9(3), 271–303 (2011b)

    Article  CAS  Google Scholar 

  107. D. Jeulin, Modèles de fonctions aléatoires multivariables. Sci. de la Terre 30, 225–256 (1991)

    Google Scholar 

  108. D. Jeulin, Random texture models for material structures. Stat. Comput. 10(2), 121–132 (2000)

    Article  Google Scholar 

  109. D. Jeulin, Caractérisation Morphologique et Modèles de Structures Aléatoires, volume 1 of Homogénéisation en Mécanique des Matériaux, chapter 4, pp. 95–132. Hermès (2001)

    Google Scholar 

  110. D. Jeulin, Variance scaling of Boolean random varieties. Technical report, Centre de Morphologie Mathématique. N/10/11/MM (2011), hal-00618967, version 1 (2011)

    Google Scholar 

  111. D. Jeulin, Power laws variance scaling of Boolean random varieties. Methodol. Comput. Appl. Probab., pp. 1–15 (2015)

    Google Scholar 

  112. D. Jeulin, M. Ostoja-Starzewski, Mechanics of Random and Multiscale Microstructures (Springer, CISM Courses, 2001)

    Book  Google Scholar 

  113. N. Kaminakis, G. Drosopoulos, G. Stavroulakis, Design and verification of auxetic microstructures using topology optimization and homogenization. Arch. App. Mech. 85(9), 1289–1306 (2015)

    Article  Google Scholar 

  114. T. Kanit, S. Forest, I. Galliet, V. Mounoury, D. Jeulin, Determination of the size of the representative volume element for random composites: Statistical and numerical approach. Int. J. Solids Struct. 40, 3647–3679 (2003)

    Article  Google Scholar 

  115. T. Kanit, F. N’Guyen, S. Forest, D. Jeulin, M. Reed, S. Singleton, Apparent and effective physical properties of heterogeneous materials: representativity of samples of two materials from food industry. Comput. Methods Appl. Mech. Eng. 195, 3960–3982 (2006)

    Article  Google Scholar 

  116. S. Khakalo, J. Niiranen, Isogeometric analysis of higher-order gradient elasticity by user elements of a commercial finite element software. Comput.-Aided Des. 82, 154–169 (2017)

    Google Scholar 

  117. S. Khandelwal, T. Siegmund, R.J. Cipra, J.S. Bolton, Adaptive mechanical properties of topologically interlocking material systems. Smart Mater. Struct. 24(4), 045037 (2015)

    Article  Google Scholar 

  118. A. Kolopp, S. Rivallant, C. Bouvet, Experimental study of sandwich structures as armour against medium-velocity impacts. Int. J. Impact Eng. 61, 24–35 (2013)

    Article  Google Scholar 

  119. C. Körner, Y. Liebold-Ribeiro, A systematic approach to identify cellular auxetic materials. Smart Mater. Struct. 24(2), 025013 (2015)

    Article  Google Scholar 

  120. M. Kotani, S. Ikeda, Materials inspired by mathematics. Sci. Technol. Adv. Mater. 17(1), 253–259 (2016)

    Article  Google Scholar 

  121. N. Kowalski, L. Delannay, P. Yan, J.F. Remacle, Finite element modeling of periodic polycrystalline aggregates with intergranular cracks. Int. J. Solids Struct. 90, 60–68 (2016)

    Article  CAS  Google Scholar 

  122. V. Krasavin, A. Krasavin, Auxetic properties of cubic metal single crystals. Phys. Status Solidi b 251(11), 2314–2320 (2014)

    Article  CAS  Google Scholar 

  123. T. Krause, A. Molotnikov, M. Carlesso, J. Rente, K. Rezwan, Y. Estrin, D. Koch, Mechanical properties of topologically interlocked structures with elements produced by freeze gelation of ceramic slurries. Adv. Eng. Mater. 14(5), 335–341 (2012)

    Article  CAS  Google Scholar 

  124. R.S. Lakes, Foam structures with a negative Poisson’s Ratio. Science 235, 1038–1040 (1987)

    Article  CAS  Google Scholar 

  125. R.S. Lakes, Deformation mechanisms in negative Poisson’s ratio materials: structural aspects. J. Mater. Sci. 26, 2287–2292 (1991)

    Article  Google Scholar 

  126. C. Lantuéjoul, Ergodicity and integral range. J. Microsc. 161, 387–403 (1991)

    Article  Google Scholar 

  127. C. Lantuéjoul, Geostatistical Simulation: Models and Algorithms (Springer, Berlin, 2002)

    Book  Google Scholar 

  128. L. Laszczyk, R. Dendievel, O. Bouaziz, Y. Br’echet, G. Parry, Design of architectured sandwich core materials using topological optimization methods. In Symposium LL Architectured Multifunctional Materials, volume 1188 of MRS Proceedings (2009)

    Google Scholar 

  129. A. Lebée, K. Sab, Homogenization of thick periodic plates: application of the bending-gradient plate theory to a folded core sandwich panel. Int. J. Solids Struct. 49(19–20), 2778–2792 (2012)

    Article  Google Scholar 

  130. M. Lewandowski, M. Amiot, A. Perwuelz, Development and characterization of 3D nonwoven composites. Mater. Sci. Forum 714, 131–137 (2012)

    Article  CAS  Google Scholar 

  131. A.W. Lipsett, A.I. Beltzer, Reexamination of dynamic problems of elasticity for negative poisson’s ratio. J. Acoust. Soc. Am. 84(6), 2179–2186 (1988)

    Article  Google Scholar 

  132. J. Liu, T. Gu, S. Shan, S.H. Kang, J.C. Weaver, K. Bertoldi, Harnessing buckling to design architected materials that exhibit effective negative swelling. Adv. Mater. 28(31), 6619–6624 (2016)

    Article  CAS  Google Scholar 

  133. K. Madi, S. Forest, M. Boussuge, S. Gailliègue, E. Lataste, J.-Y. Buffière, D. Bernard, D. Jeulin, Finite element simulations of the deformation of fused-cast refractories based on x-ray computed tomography. Comput. Mater. Sci. 39, 224–229 (2007)

    Article  CAS  Google Scholar 

  134. K. Madi, S. Forest, P. Cordier, M. Boussuge, Numerical study of creep in two-phase aggregates with a large rheology contrast: implications for the lower mantle. Earth Planet. Sci. Lett. 237(1–2), 223–238 (2005)

    Article  CAS  Google Scholar 

  135. J. Martin, J.-J. Heyder-Bruckner, C. Remillat, F. Scarpa, K. Potter, M. Ruzzene, The hexachiral prismatic wingbox concept. Phys. Status Solidi (b) 245(3), 570–577 (2008)

    Article  CAS  Google Scholar 

  136. A. Mather, R. Cipra, T. Siegmund, Structural integrity during remanufacture of a topologically interlocked material. Int. J. Struct. Integrity 3(1), 61–78 (2012)

    Article  Google Scholar 

  137. G. Matheron, The Theory of Regionalized Variables and its Applications Les Cahiers du Centre de Morphologie Mathématique de Fontainebleau. (Ecole des Mines de Paris, 1971)

    Google Scholar 

  138. G. Matheron, Random Sets and Integral Geometry (Wiley, 1975)

    Google Scholar 

  139. G. Matheron, Estimating and Choosing (Springer, Berlin, 1989)

    Book  Google Scholar 

  140. K. Matouš, M.G.D. Geers, V.G. Kouznetsova, A. Gillman, A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. J. Comput. Phys. 330, 192–220 (2017)

    Article  Google Scholar 

  141. L. Mezeix, C. Bouvet, J. Huez, D. Poquillon, Mechanical behavior of entangled fibers and entangled cross-linked fibers during compression. J. Mater. Sci. 44(14), 3652–3661 (2009)

    Article  CAS  Google Scholar 

  142. J.-C. Michel, H. Moulinec, P. Suquet, Effective properties of composite materials with periodic microstructure: a computational approach. Comput. Methods Appl. Mech. Eng. 172, 109–143 (1999)

    Article  Google Scholar 

  143. R.E. Miller, A continuum plasticity model for the constitutive and indentation behaviour of foamed metals. Int. J. Mech. Sci. 42, 729–754 (2000)

    Article  Google Scholar 

  144. G.W. Milton, Composite materials with Poisson’s Ratios close to -1. J. Mech. Phys. Solids 40(5), 1105–1137 (1992)

    Article  Google Scholar 

  145. A. Molotnikov, Y. Estrin, A.V. Dyskin, E. Pasternak, A.J. Kanel-Belov, Percolation mechanism of failure of a planar assembly of interlocked osteomorphic elements. Eng. Fracture Mech. 74, 1222–1232 (2007)

    Article  Google Scholar 

  146. A. Molotnikov, R. Gerbrand, O. Bouaziz, Y. Estrin, Sandwich panels with a core segmented into topologically interlocked elements. Adv. Eng. Mater. 15(8), 728–731 (2013)

    Article  Google Scholar 

  147. A. Molotnikov, R. Gerbrand, Y. Qi, G.P. Simon, Y. Estrin, Design of responsive materials using topologically interlocked elements. Smart Mater. Struct. 24(2), 025034 (2015)

    Article  CAS  Google Scholar 

  148. G.B. Olson, Beyond discovery: design for a new material world. Calphad 25(2), 175–190 (2001)

    Article  CAS  Google Scholar 

  149. M. Osanov, J.K. Guest, Topology optimization for architected materials design. Ann. Rev. Mater. Res. 46, 211–233 (2016)

    Article  CAS  Google Scholar 

  150. M. Ostoja-Starzewski, Microstructural randomness versus representative volume element in thermomechanics. J. Appl. Mech. 69(1), 25–35 (2002)

    Article  Google Scholar 

  151. M. Ostoja-Starzewski, Microstructural Randomness and Scaling in Mechanics of Materials (Chapman & Hall/CRC, Mordern Mechanics and Mathematics, 2008)

    Google Scholar 

  152. M. Oumarou, D. Jeulin, J. Renard, Etude statistique multi-échelle du comportement élastique et thermique d’un composite thermoplastique. Rev. des Compos. et des matériaux avancés 21, 221–254 (2011)

    Google Scholar 

  153. M. Oumarou, D. Jeulin, J. Renard, P. Castaing, Multi-scale statistical approach of the elastic and thermal behavior of a thermoplastic polyamid-glass fiber composite. Tech. Mechanik 32(2–5), 484–506 (2012)

    Google Scholar 

  154. D.H. Pahr, P.K. Zysset, Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomech. Model. Mechanobiol. 7, 463–476 (2008)

    Article  Google Scholar 

  155. E. Pasternak, A. Dyskin, Materials and structures with macroscopic negative poissons ratio. Int. J. Eng. Sci. 52, 103–114 (2012)

    Article  Google Scholar 

  156. C. Pelissou, J. Baccou, Y. Monerie, F. Perales, Determination of the size of the representative volume element for random quasi-brittle composites. Int. J. Solids Struct. 46, 2842–2855 (2009)

    Article  Google Scholar 

  157. X.L. Peng, E. Husser, G.Y. Huang, S. Bargmann, Modeling of surface effects in crystalline materials within the framework of gradient crystal plasticity. J. Mech. Phys. Solids 112, 508–522 (2018)

    Article  Google Scholar 

  158. C. Peyrega, D. Jeulin, C. Delisée, J. Malvestio, 3D morphological modelling of a random fibrous network. Image Anal. Stereol. 28, 129–141 (2009)

    Article  Google Scholar 

  159. C. Peyrega, D. Jeulin, C. Delisée, J. Malvestio, 3D morphological characterization of phonic insulation fibrous media. Adv. Eng. Mater. 13(3), 156–164 (2011)

    Article  CAS  Google Scholar 

  160. Pham, T. T.T, Un modèle d’endommagement à gradient de déformation à partir de la méthode d’homogénéisation pour les matériaux fragiles. Ph.D. thesis, Université Paris XIII, 2010

    Google Scholar 

  161. R.C. Picu, Mechanics of random fiber networks–a review. Soft Matter 7, 6768–6785 (2011)

    Article  CAS  Google Scholar 

  162. R.C. Picu, H. Hatami-Marbini, Long-range correlations of elastic fields in semi-flexible fiber networks. Comput. Mech. 46, 635–640 (2010)

    Article  Google Scholar 

  163. E. Piollet, Amortissement non-linéaire des structures sandwichs à matériau d’âme en fibres enchevêtrées. Ph.D. thesis, ISAE, Toulouse, 2014

    Google Scholar 

  164. E. Piollet, G. Michon, D. Poquillon, Nonlinear vibration behavior of sandwich beams with entangled fiber core material. In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (American Society of Mechanical Engineers, 2013), pp. V008T13A013–V008T13A013

    Google Scholar 

  165. E. Piollet, D. Poquillon, G. Michon, Dynamic hysteresis modelling of entangled cross-linked fibres in shear. J. Sound Vibr. 383, 248–264 (2016)

    Article  Google Scholar 

  166. L. Placidi, E. Barchiesi, A. Della Corte, Mathematical Modelling in Solid Mechanics, volume 69 of Advanced Structured Materials, chapter Identification of Two-Dimensional Pantographic Structures with a Linear D4 Orthotropic Second Gradient Elastic Model Accounting for External Bulk Double Forces (Springer, Singapore, 2017), pp. 211–232

    Google Scholar 

  167. L. Placidi, A.R. El Dhaba, Semi-inverse method à la saint-venant for two-dimensional linear isotropic homogeneous second-gradient elasticity. Math. Mech. Solids 22(5), 919–937 (2015)

    Article  Google Scholar 

  168. M. Poncelet, A. Somera, C. Morel, C. Jailin, N. Auffray, An experimental evidence of the failure of Cauchy elasticity for the overall modeling of a non-centro-symmetric lattice under static loading. Int. J. Solids Struct. 147, 223–237 (2018)

    Article  Google Scholar 

  169. D. Prall, R.S. Lakes, Properties of a Chiral honeycomb with a Poisson’s ratio of -1. Int. J. Mech. Sci. 39(3), 305–314 (1997)

    Article  Google Scholar 

  170. Y. Rahali, I. Goda, J.-F. Ganghoffer, Numerical identification of classical and nonclassical moduli of 3d woven textiles and analysis of scale effects. Compos. Struct. 135, 122–139 (2016)

    Article  Google Scholar 

  171. X. Ren, J. Shen, A. Ghaedizadeh, H. Tian, Y.M. Xie, A simple auxetic tubular structure with tuneable mechanical properties. Smart Mater. Struct. 5(6), 065012 (2016)

    Article  CAS  Google Scholar 

  172. A. Reuss, Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. Zeitschrift für angewandte Mathematik und Mechanik 9(1), 49–58 (1929)

    Article  CAS  Google Scholar 

  173. D. Rodney, B. Gadot, O.R. Martinez, S.R. Du Roscoat, L. Orgéas, Reversible dilatancy in entangled single-wire materials. Nat. Mater. 15(1), 72 (2016)

    Article  CAS  Google Scholar 

  174. G. Rosi, N. Auffray, Anisotropic and dispersive wave propagation within strain-gradient framework. Wave Motion 63, 120–134 (2016)

    Article  Google Scholar 

  175. G. Rosi, V.H. Nguyen, A. Loseille, S. Naili, Ultrasonic characterization of porous gyroid scaffolds for bone tissue engineering: mechanical modelling and numerical validation. J. Acoust. Soc. Am. 144(3), 1854 (2018a)

    Article  Google Scholar 

  176. G. Rosi, L. Placidi, N. Auffray, On the validity range of strain-gradient elasticity: a mixed static-dynamic identification procedure. Eur. J. Mech. A/Solids 69, 179–191 (2018b)

    Article  Google Scholar 

  177. G. Rosi, I. Scala, V. Nguyen, S. Naili, Wave propagation in strain gradient poroelastic medium with microinertia: closed-form and finite element solutions. Zeitschrift für angewandte Mathematik und Physik 63(3), 58 (2017)

    Article  Google Scholar 

  178. L. Rothenburg, A.A. Berlin, R.J. Bathurst, Microstructure of isotropic materials with negative Poisson’s ratio. Nature 354, 470–472 (1991)

    Article  Google Scholar 

  179. K. Sab, On the homogenization and the simulation of random materials. Eur. J. Mech. A/Solids 11(5), 585–607 (1992)

    Google Scholar 

  180. K. Sab, A. Lebée, Homogenization of Heterogeneous Thin and Thick Plates (Wiley, Hoboken, 2015)

    Book  Google Scholar 

  181. K. Sab, B. Nedjar, Periodization of random media and representative volume element size for linear composites. C.-R. de l’Acad. des Sci. Serie IIb : Mécanique 333, 187–195 (2005)

    Google Scholar 

  182. M. Salmi, F. Auslender, M. Bornert, M. Fogli, Apparent and effective mechanical properties of linear matrix-inclusion random composites: Improved bounds for the effective behavior. Int. J. Solids Struct. 49, 1195–1211 (2012a)

    Article  Google Scholar 

  183. M. Salmi, F. Auslender, M. Bornert, M. Fogli, Various estimates of representative volume element sizes based on a statistical analysis of the apparent behavior of random linear composites. C.-R. de l’Acad. des Sci. Serie IIb : Mécanique 340, 230–246 (2012b)

    Google Scholar 

  184. K. Salonitis, D. Chantzis, V. Kappatos, A hybrid finite element analysis and evolutionary computation method for the design of lightweight lattice components with optimized strut diameter. Int. J. Adv. Manufact. Technol. 90(9–12), 2689–2701 (2017)

    Article  Google Scholar 

  185. E. Sanchez-Palencia, A. Zaoui, Homogenization Techniques for Composite Media, vol. 272. Lecture Notes in Physics (Springer, Berlin, 1987)

    Google Scholar 

  186. V. Sansalone, P. Trovalusci, F. Cleri, Multiscale modeling of composite materials by a multifield finite element approach. Int. J. Multiscale Comput. Eng. 3, 463–480 (2005)

    Article  Google Scholar 

  187. B. Sarac, J. Wilmers, S. Bargmann, Property optimization of porous metallic glasses via structural design. Mater. Lett. 134, 306–310 (2014)

    Article  CAS  Google Scholar 

  188. F. Scarpa, J.R. Yates, L.G. Ciffo, S. Patsias, Dynamic crushing of auxetic open-cell polyurethane foam. Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci. 216(12), 1153–1156 (2002)

    Google Scholar 

  189. S. Schaare, W. Riehemann, Y. Estrin, Damping properties of an assembly of topologically interlocked cubes. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 521–522, 380–383 (2009)

    Google Scholar 

  190. T.A. Schaedler, W.B. Carter, Architected cellular materials. Ann. Rev. Mater. Res. 46, 187–210 (2016)

    Article  CAS  Google Scholar 

  191. T.A. Schaedler, A.J. Jacobsen, A. Torrents, A.E. Sorensen, J. Lian, J.R. Greer, L. Valdevit, W.B. Carter, Ultralight metallic microlattices. Science 334(6058), 962–965 (2011)

    Article  CAS  Google Scholar 

  192. K. Schladitz, S. Peters, D. Reinel-Bitzer, A. Wiegmann, J. Ohser, Design of acoustic trim based on geometric modeling and flow simulation for non-woven. Comput. Mater. Sci. 38, 56–66 (2006)

    Article  Google Scholar 

  193. I. Shufrin, E. Pasternak, A. Dyskin, Planar isotropic structures with negative poissons ratio. Int. J. Solids Struct. 49(17), 2239–2253 (2012)

    Article  Google Scholar 

  194. I. Shufrin, E. Pasternak, A. Dyskin, Negative poissons ratio in hollow sphere materials. Int. J. Solids Struct. 54, 192–214 (2015)

    Article  Google Scholar 

  195. P. Smith, S. Torquato, Computer simulation results for the two-point probability function of composite media. J. Comput. Phys. 76(1), 176–191 (1988)

    Article  Google Scholar 

  196. M.A. Soare, R.C. Picu, An approach to solving mechanics problems for materials with multiscale self-similar microstructure. Int. J. Solids Struct. 44, 7877–7890 (2007)

    Article  Google Scholar 

  197. C. Soyarslan, S. Bargmann, M. Pradas, J. Weissmuller, 3D stochastic bicontinuous microstructures: generation, topology and elasticity. Acta Mater. 149, 326–340 (2018)

    Article  CAS  Google Scholar 

  198. A. Spadoni, M. Ruzzene, S. Gonella, F. Scarpa, Phononic properties of hexagonal chiral lattices. Wave Motion 46(7), 435–450 (2009)

    Article  Google Scholar 

  199. J. Teixeira-Pinto, C. Nadot-Martin, F. Touchard, M. Gueguen, S. Castagnet, Towards the size estimation of a representative elementary domain in semi-crystalline polymers. Mechanics of Materials in press (2016)

    Google Scholar 

  200. K. Terada, M. Hori, T. Kyoya, N. Kikuchi, Simulation of the multi-scale convergence in computational homogenization approaches. Int. J. Solids Struct. 37, 2285–2311 (2000)

    Article  Google Scholar 

  201. S. Torquato, Morphology and effective properties of disordered heterogeneous media. Int. J. Solids Struct. 35(19), 2385–2406 (1998)

    Article  Google Scholar 

  202. S. Torquato, Random Heterogeneous Materials (Springer, Berlin, 2001)

    Google Scholar 

  203. D.K. Trinh, R. Jänicke, N. Auffray, S. Diebels, S. Forest, Evaluation of generalized continuum substitution models for heterogeneous materials. Int. J. Multiscale Comput. Eng. 10(6), 527–549 (2012)

    Article  Google Scholar 

  204. N. Vermaak, G. Michailidis, G. Parry, R. Estevez, G. Allaire, Y. Brechet, Material interface effects on the topology optimizationof multi-phase structures using a level set method. Struct. Mult. Optim. 50(4), 623–644 (2014)

    Article  Google Scholar 

  205. W.M. Vicente, Z.H. Zuo, R. Pavanello, T.K.L. Calixto, R. Picelli, Y.M. Xie, Concurrent topology optimization for minimizing frequency responses of two-level hierarchical structures. Comput. Methods Appl. Mech. Eng. 301, 116–136 (2016)

    Article  Google Scholar 

  206. W. Voigt, Ueber die beziehung zwischen den beiden elasticitätsconstanten isotroper körper. Ann. der Phys. und Chem. 38, 573–587 (1889)

    Article  Google Scholar 

  207. Y. Wang, H. Xu, D. Pasini, Multiscale isogeometric topology optimization for lattice materials. Comput. Methods Appl. Mech. Eng. 316, 568–585 (2017a)

    Article  Google Scholar 

  208. Z.P. Wang, L.H. Poh, J. Dirrenberger, Y. Zhu, S. Forest, Isogeometric shape optimization of smoothed petal auxetic structures via computational periodic homogenization. Comput. Methods Appl. Mech. Eng. 323, 250–271 (2017b)

    Article  Google Scholar 

  209. P.M. Weaver, M.F. Ashby, The optimal selection of material and section-shape. J. Eng. Des. 7(2), 129–150 (1996)

    Article  Google Scholar 

  210. B. Xu, X. Huang, S.W. Zhou, Y.M. Xie, Concurrent topological design of composite thermoelastic macrostructure and microstructure with multi-phase material for maximum stiffness. Compos. Struct. 150, 84–102 (2016a)

    Article  Google Scholar 

  211. S. Xu, J. Shen, S. Zhou, X. Huang, Y.M. Xie, Design of lattice structures with controlled anisotropy. Mater. Des. 93, 443–447 (2016b)

    Article  Google Scholar 

  212. W. Yang et al., Review on auxetic materials. J. Mater. Sci. 39, 3269–3279 (2004)

    Article  CAS  Google Scholar 

  213. C.L.Y. Yeong, S. Torquato, Reconstructing random media. Phys. Rev. E 57(1), 495 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Dirrenberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dirrenberger, J., Forest, S., Jeulin, D. (2019). Computational Homogenization of Architectured Materials. In: Estrin, Y., Bréchet, Y., Dunlop, J., Fratzl, P. (eds) Architectured Materials in Nature and Engineering. Springer Series in Materials Science, vol 282. Springer, Cham. https://doi.org/10.1007/978-3-030-11942-3_4

Download citation

Publish with us

Policies and ethics