Mechanics of Arthropod Cuticle-Versatility by Structural and Compositional Variation

  • Yael PolitiEmail author
  • Benny Bar-On
  • Helge-Otto Fabritius
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 282)


The arthropod cuticle may be seen as a multifunctional material displaying a wide range of physical properties. The materials properties of the cuticle are brought about by compositional and structural gradients at multiple hierarchical levels. In the following chapter we first discuss the main components of the cuticle, namely, chitin, proteins, water, mineral and tanning agents and their relevance in determining the mechanical properties of the cuticle. We then describe the hierarchical organization of the cuticle and how it contributes to tuning the mechanical properties of the material. Finally we show several examples of cuticular structures with increasing structural complexity to exemplify the discussed principles.


  1. 1.
    A.C. Neville, Biology of the Arthropod Cuticle (Springer, Berlin, 1975)CrossRefGoogle Scholar
  2. 2.
    S. Manton, The Arthropoda. Habits, Functional Morphology, and Evolution (Clarendon Press, Oxford, 1977)Google Scholar
  3. 3.
    H.R. Hepburn, The Insect Integument (Elsevier Scientific Publishing Company, Amsterdam, 1976)Google Scholar
  4. 4.
    J. Blackwell, M.A. Weih, Structure of chitin-protein complexes: ovipositor of the ichneumon fly Megarhyssa. J. Mol. Biol. 137, 49–60 (1980)CrossRefGoogle Scholar
  5. 5.
    N. Eldredge, Arthropod Fossils and Phylogeny (Columbia University Press, New York, 1998)Google Scholar
  6. 6.
    R.C. Brusca, Unraveling the history of arthropod biodiversification. Ann. Missouri Bot. Gard. 87, 13–25 (2000)CrossRefGoogle Scholar
  7. 7.
    N.F. Hadley, The arthropod cuticle. Sci. Am. 255, 98–106 (1986)CrossRefGoogle Scholar
  8. 8.
    B. Moussian, Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochem. Mol. Biol. 40, 363–375 (2010)CrossRefGoogle Scholar
  9. 9.
    B. Moussian, Molecular model of skeletal organization and differentiation, in Extracellular Composite Matrices in Arthropods, ed. by E. Cohen, B. Moussian (Springer International Publishing, Berlin, 2016), pp. 67–87CrossRefGoogle Scholar
  10. 10.
    S.B. Murray, A.C. Neville, The role of pH, temperature and nucleation in the formation of cholesteric liquid crystal spherulites from chitin and chitosan. Int. J. Biol. Macromol. 22, 137–144 (1998)CrossRefGoogle Scholar
  11. 11.
    S.J. Hamodrakas, J.H. Willis, V.A. Iconomidou, A structural model of the chitin-binding domain of cuticle proteins. Insect Biochem. Mol. Biol. 32, 1577–1583 (2002)CrossRefGoogle Scholar
  12. 12.
    R. Yu et al., Helicoidal organization of chitin in the cuticle of the migratory locust requires the function of the chitin deacetylase 2 enzyme (LmCDA2). J. Biol. Chem. 291, 24352–24363 (2016)CrossRefGoogle Scholar
  13. 13.
    M. Locke, The structure and formation of the cuticulin layer in the epicuticle of an insect, Calpodes ethlius (Lepidoptera, Hesperiidae). J. Morphol. 118, 461–494 (1966)CrossRefGoogle Scholar
  14. 14.
    R. Zuber et al., The ABC transporter Snu drives formation of the lipid-based inward and outward barrier in the skin of Drosophila (2017)Google Scholar
  15. 15.
    M. Locke, D. Ph, Pore canals and related structures in insect cuticle. J. Biophys. Biochem. Cytol. 10, 589–618 (1961)CrossRefGoogle Scholar
  16. 16.
    R.D. Roer, R.M. Dillaman, Molt-related change in integumental structure and function, in The Crustacean Integument Morphology and Biochemistry, vol. 240, ed. by M.N. Horst, J. Freeman (CRC Press, Boca Raton, FL, 1993)Google Scholar
  17. 17.
    Y. Bouligand, Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue Cell 4, 189–217 (1972)CrossRefGoogle Scholar
  18. 18.
    M. Rinaudo, Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603–632 (2006)CrossRefGoogle Scholar
  19. 19.
    B. Focher, A. Naggi, G. Torri, A. Cosani, M. Terbojevich, Structural differences between chitin polymorphs and their precipitates from solutions—evidence from CP-MAS 13C-NMR, FT-IR and FT-Raman spectroscopy. Carbohydr. Polym. 17, 97–102 (1992)CrossRefGoogle Scholar
  20. 20.
    P. Sikorski, R. Hori, M. Wada, Revisit of alpha-chitin crystal structure using high resolution X-ray diffraction data. Biomacromol 10, 1100–1105 (2009)CrossRefGoogle Scholar
  21. 21.
    K. Kobayashi, S. Kimura, E. Togawa, M. Wada, Crystal transition between hydrate and anhydrous β-chitin monitored by synchrotron X-ray fiber diffraction. Carbohydr. Polym. 79, 882–889 (2010)CrossRefGoogle Scholar
  22. 22.
    S. Muthukrishnan, H. Merzendorfer, Y. Arakane, Q. Yang, Chitin metabolic pathways in insects and their regulation, in Extracellular Composite Matrices in Arthropods, ed. by E. Cohen, B. Moussian (Springer International Publishing, Berlin, 2016), pp. 31–65CrossRefGoogle Scholar
  23. 23.
    H. Merzendorfer, Insect chitin synthases: a review. J. Comp. Physiol. B. 176, 1–15 (2006)CrossRefGoogle Scholar
  24. 24.
    B. Moussian et al, Deciphering the genetic programme triggering timely and spatially-regulated chitin deposition. PLOS Genet. 1–24 (2015)Google Scholar
  25. 25.
    J.H. Willis, Cuticular Proteins in Insects and Crustaceans. Integr. Comp. Biol. 39, 600–609 (1999)Google Scholar
  26. 26.
    S. Luschnig, T. Bätz, K. Armbruster, M.A. Krasnow, Serpentine and vermiform encode matrix proteins with chitin binding and deacetylation domains that limit tracheal tube length in Drosophila. Curr. Biol. 16, 186–194 (2006)CrossRefGoogle Scholar
  27. 27.
    X. Zhao et al., Identification and expression of cuticular protein genes based on Locusta migratoria transcriptome. Sci. Rep. 7, 45462 (2017)CrossRefGoogle Scholar
  28. 28.
    D.L. Cox, J.H. Willis, Post-translational modifications of the cuticular proteins of Hyalophora cecropia from different anatomical regions and metamorphic stages. Insect Biochem. 17, 469–484 (1987)CrossRefGoogle Scholar
  29. 29.
    S.O. Andersen, Biochemistry of insect cuticle. Ann. Rev. Entomol. 24, 29–61 (1979)CrossRefGoogle Scholar
  30. 30.
    M.G.M. Pryor, On the hardening of the ootheca of Blatta orientalis. Proc. R. Soc. B Biol. Sci. 128, 378–393 (1940)Google Scholar
  31. 31.
    S. Andersen, M. Peter, P. Roepstorff, Cuticular sclerotization in insects. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 113, 689–705 (1996)CrossRefGoogle Scholar
  32. 32.
    S.S. Chaudhari et al., Knickkopf protein protects and organizes chitin in the newly synthesized insect exoskeleton 1–6 (2011)Google Scholar
  33. 33.
    R. Tajiri, N. Ogawa, H. Fujiwara, T. Kojima, Mechanical control of whole body shape by a single cuticular protein Obstructor-E in Drosophila melanogaster. PLoS Genet. 13, e1006548 (2017)CrossRefGoogle Scholar
  34. 34.
    S. Abehsera et al., MARS: a protein family involved in the formation of vertical skeletal elements. J. Struct. Biol. 198, 92–102 (2017)CrossRefGoogle Scholar
  35. 35.
    J.H. Willis, Structural cuticular proteins from arthropods: annotation, nomenclature, and sequence characteristics in the genomics era. Insect Biochem. Mol. Biol. 40, 189–204 (2010)CrossRefGoogle Scholar
  36. 36.
    Y. Tan et al., Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient. Nat. Chem. Biol. 11, 488–495 (2015)CrossRefGoogle Scholar
  37. 37.
    J.E. Rebers, L.M. Riddiford, Structure and expression of a Manduca sexta larval cuticle gene homologous to Drosophila cuticle genes. J. Mol. Biol. 203, 411–423 (1988)CrossRefGoogle Scholar
  38. 38.
    J.E. Rebers, J.H. Willis, A conserved domain in arthropod cuticular proteins binds chitin. Insect Biochem. Mol. Biol. 31, 1083–1093 (2001)CrossRefGoogle Scholar
  39. 39.
    S. Mun et al., Cuticular protein with a low complexity sequence becomes cross-linked during insect cuticle sclerotization and is required for the adult molt. Sci. Rep. 5, 10484 (2015)CrossRefGoogle Scholar
  40. 40.
    S.O. Andersen, Are structural proteins in insect cuticles dominated by intrinsically disordered regions? Insect Biochem. Mol. Biol. 41, 620–627 (2011)CrossRefGoogle Scholar
  41. 41.
    Y. Zhou et al., Distribution of cuticular proteins in different structures of adult Anopheles gambiae. Insect Biochem. Mol. Biol. 75, 45–57 (2016)CrossRefGoogle Scholar
  42. 42.
    T. Weis-Fogh, A rubber-like protein in insect cuticle. J. Exp. Biol. 37, 889–907 (1960)Google Scholar
  43. 43.
    S.O. Andersen, Characterization of a new type of cross-linkage in resilin, a rubber-like protein. Biochim. Biophys. Acta 69, 249–262 (1963)CrossRefGoogle Scholar
  44. 44.
    H.C. Bennet-Clark, E.C. Lucey, The jump of the flea: a study of the energetics and a model of the mechanism. J. Exp. Biol. 47, 59–67 (1967)Google Scholar
  45. 45.
    J. Michels, E. Appel, S.N. Gorb, Resilin—the pliant protein, in Extracellular Composite Matrices in Arthropods, ed. by E. Cohen, B. Moussian (Springer International Publishing, Berlin, 2016), pp. 89–136CrossRefGoogle Scholar
  46. 46.
    A.C. Neville, Biology of Fibrous Composites: Development Beyond the Cell Membrane (Cambridge University Press, New York, 1993)CrossRefGoogle Scholar
  47. 47.
    J.F.V. Vincent, U.G.K. Wegst, Design and mechanical properties of insect cuticle. Arthropod Struct. Dev. 33, 187–199 (2004)CrossRefGoogle Scholar
  48. 48.
    V.A. Iconomidou, G.D. Chryssikos, V. Gionis, J.H. Willis, S.J. Hamodrakas, ‘Soft’-cuticle protein secondary structure as revealed by FT-Raman, ATR FT-IR and CD spectroscopy. Insect Biochem. Mol. Biol. 31, 877–885 (2001)CrossRefGoogle Scholar
  49. 49.
    V.A. Iconomidou, J.H. Willis, S.J. Hamodrakas, Unique features of the structural model of ‘hard’ cuticle proteins: implications for chitin-protein interactions and cross-linking in cuticle. Insect Biochem. Mol. Biol. 35, 553–560 (2005)CrossRefGoogle Scholar
  50. 50.
    G. Fraenkel, K.M. Rudall, The structure of insect cuticles. Proc. R. Soc. London. Ser. B 134, 111–143 (1947)CrossRefGoogle Scholar
  51. 51.
    E. Atkins, Conformations in polysaccharides and complex carbohydrates. J. Biosci. 8, 375–387 (1985)CrossRefGoogle Scholar
  52. 52.
    C. Valverde Serrano et al., Ordering of protein and water molecules at their interfaces with chitin nano-crystals. J. Struct. Biol. 193, 124–131 (2016)CrossRefGoogle Scholar
  53. 53.
    R.S. Cornman, The distribution of GYR- and YLP-like motifs in Drosophila suggests a general role in cuticle assembly and other protein-protein interactions. PLoS ONE 5, 1–10 (2010)CrossRefGoogle Scholar
  54. 54.
    J.E. Hillerton, J.F. Vincent, The specific location of zinc in insect mandibles. J. Exp. Biol. 101, 333–336 (1982)Google Scholar
  55. 55.
    J.E. Hillerton, J.F.V. Vincent, Consideration of the importance of hydrophobic interactions in stabilizing insect cuticle. Int. J. Biol. Macromol. 5, 163–166 (1983)CrossRefGoogle Scholar
  56. 56.
    J.F.V. Vincent, J.E. Hillerton, The tanning of insect cuticle—a critical review and a revised mechanism. J. Insect Physiol. 25, 653–658 (1979)CrossRefGoogle Scholar
  57. 57.
    S.E. Reynolds, The mechanism of plasticization of the abdominal cuticle in Rhodnius. J. Exp. Biol. 62, 81–98 (1975)Google Scholar
  58. 58.
    R.H. Hackman, M. Goldberg, Comparative study of some expanding arthropod cuticles: the relation between composition, structure and function. J. Insect Physiol. 33, 39–50 (1987)CrossRefGoogle Scholar
  59. 59.
    Y. Politi et al., A spider’s fang: how to design an injection needle using chitin-based composite material. Adv. Funct. Mater. 22, 2519–2528 (2012)CrossRefGoogle Scholar
  60. 60.
    Y. Politi et al., Nano-channels in the spider fang for the transport of Zn ions to cross-link His-rich proteins pre-deposited in the cuticle matrix. Arthropod Struct. Dev. 46, 30–38 (2016)CrossRefGoogle Scholar
  61. 61.
    M. Erko et al., Structural and mechanical properties of the arthropod cuticle: comparison between the fang of the spider Cupiennius salei and the carapace of American lobster Homarus americanus. J. Struct. Biol. 183, 172–179 (2013)CrossRefGoogle Scholar
  62. 62.
    J. Eric Hillerton, B. Robertson, J.F.V. Vincent, The presence of zinc or manganese as the predominant metal in the mandibles of adult, stored-product beetles. J. Stored Prod. Res. 20, 133–137 (1984)CrossRefGoogle Scholar
  63. 63.
    R. Schofield, H. Lefevre, Short communication: high concentrations of zinc in the fangs and manganese in the teeth of spiders. J. Exp. Biol. 144, 577 (1989)Google Scholar
  64. 64.
    D.L.J. Quicke, P. Wyeth, J.D. Fawke, H.H. Basibuyuk, J.F.V. Vincent, Manganese and zinc in the ovipositors and mandibles of hymenopterous insects. Zool. J. Linn. Soc. 124, 387–396 (1998)CrossRefGoogle Scholar
  65. 65.
    R.M.S. Schofield, H.W. Lefevre, PIXE-STIM microtomography: zinc and manganese concentrations in a scorpion stinger. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 72, 104–110 (1992)CrossRefGoogle Scholar
  66. 66.
    R.M.S. Schofield, Zinc is incorporated into cuticular ‘tools’ after ecdysis: the time course of the zinc distribution in ‘tools’ and whole bodies of an ant and a scorpion. J. Insect Physiol. 49, 31–44 (2003)CrossRefGoogle Scholar
  67. 67.
    T.D. Morgan, P. Baker, K.J. Kramer, H.H. Basibuyuk, D.L.J. Quicke, Metals in mandibles of stored product insects: do zinc and manganese enhance the ability of larvae to infest seeds? J. Stored Prod. Res. 39, 65–75 (2003)CrossRefGoogle Scholar
  68. 68.
    T. Schöberl, I.L. Jäger, Wet or dry—hardness, stiffness and wear resistance of biological materials on the micron scale. Adv. Eng. Mater. 8, 1164–1169 (2006)CrossRefGoogle Scholar
  69. 69.
    B.W. Cribb et al., Insect mandibles—comparative mechanical properties and links with metal incorporation. Naturwissenschaften 95, 17–23 (2008)CrossRefGoogle Scholar
  70. 70.
    B.W. Cribb et al., Structure, composition and properties of naturally occurring non-calcified crustacean cuticle. Arthropod Struct. Dev. 38, 173–178 (2009)CrossRefGoogle Scholar
  71. 71.
    E. Degtyar, M.J. Harrington, Y. Politi, P. Fratzl, The mechanical role of metal ions in biogenic protein-based materials. Angewandte. 12026–12044 (2014)Google Scholar
  72. 72.
    J. Schaefer et al., Aromatic cross-links in insect cuticle: detection by solid-state 13C and 15N NMR. Science 235, 1200–1204 (1987)CrossRefGoogle Scholar
  73. 73.
    R. Xu, X.I.N. Huang, T.L. Hopkins, K.J. Kramer, Rapid communication catecholamine and histidyl protein cross-linked structures in sclerotized insect cuticle. 9651748 (1997)Google Scholar
  74. 74.
    S. Zhang, I.-M. Tso, Spider silk: factors affecting mechanical properties and biomimetic applications, in Extracellular Composite Matrices in Arthropods, ed. by E. Cohen, B. Moussian (Springer International Publishing, Berlin, 2016), pp. 489–513CrossRefGoogle Scholar
  75. 75.
    K.J. Kramer, T.L. Hopkins, J. Schaefer, Applications of solids NMR to the analysis of insect sclerotized structures. Insect Biochem. Mol. Biol. 25, 1067–1080 (1995)CrossRefGoogle Scholar
  76. 76.
    J.L. Kerwin et al., Mass spectrometric analysis of catechol-histidine adducts from insect cuticle. Anal. Biochem. 268, 229–237 (1999)CrossRefGoogle Scholar
  77. 77.
    P. Wappner, L.A. Quesada-Allué, Water loss during cuticle sclerotization in the medfly Ceratitis capitata is independent of catecholamines. J. Insect Physiol. 42, 705–709 (1996)CrossRefGoogle Scholar
  78. 78.
    S.O. Andersen, Insect cuticular sclerotization: a review. Insect Biochem. Mol. Biol. 40, 166–178 (2010)CrossRefGoogle Scholar
  79. 79.
    T.L. Hopkins, K.J. Kramer, Insect cuticle sclerotization. Annu. Rev. Entomol. 37, 273–302 (1992)CrossRefGoogle Scholar
  80. 80.
    K. Hiruma, L.M. Riddiford, Granular phenoloxidase involved in cuticular melanization in the tobacco hornworm: regulation of its synthesis in the epidermis by juvenile hormone. Dev. Biol. 130, 87–97 (1988)CrossRefGoogle Scholar
  81. 81.
    H. Nakagawa, Y. Hori, S. Sato, T.B. Fitzpatrick, R.L. Martuza, The nature and origin of the melanin macroglobule. J Invest Dermatol 83, 134–139 (1984)CrossRefGoogle Scholar
  82. 82.
    H. Kayser, Pigments, in Comprehensive Insect Physiology, Biochemistry and Pharmacology, ed. by G.A. Kerkut, L.I. Gilbert (Pergamon Press, New York, 1985)Google Scholar
  83. 83.
    J.F.V. Vincent, S. Ablett, Hydration and tanning in insect cuticle. J. Insect Physiol. 33, 973–979 (1987)CrossRefGoogle Scholar
  84. 84.
    H.C. Lichtenegger et al., Zinc and mechanical prowess in the jaws of Nereis, a marine worm. Proc. Natl. Acad. Sci. 100, 9144–9149 (2003)CrossRefGoogle Scholar
  85. 85.
    R.M.S. Schofield et al., Br-rich tips of calcified crab claws are less hard but more fracture resistant: a comparison of biomineralized and heavy-element biomaterials. J. Struct. Biol. 166, 272–287 (2009)CrossRefGoogle Scholar
  86. 86.
    A. Becker, M. Epple, The mineral phase in the cuticle of two species of Crustacea consists of magnesium calcite, amorphous calcium carbonate and amorphous calcium phosphate. Dalt. Trans. 1814–1820 (2005)Google Scholar
  87. 87.
    A. Al-Sawalmih et al., Microtexture and chitin/calcite orientation relationship in the mineralized exoskeleton of the American lobster. Adv. Funct. Mater. 18, 3307–3314 (2008)CrossRefGoogle Scholar
  88. 88.
    H.A. Lowenstam, S. Weiner, On Biomineralization (Oxford University Press, Oxford, 1989)Google Scholar
  89. 89.
    S. Bentov et al., Enamel-like apatite crown covering amorphous mineral in a crayfish mandible. Nat. Commun. 3, 839 (2012)CrossRefGoogle Scholar
  90. 90.
    J.C. Weaver et al., The stomatopod dactyl club: a formidable damage-tolerant biological hammer. Science 336, 1275–1280 (2012)CrossRefGoogle Scholar
  91. 91.
    F. Neues, A. Ziegler, M. Epple, The composition of the mineralized cuticle in marine and terrestrial isopods: a comparative study. CrystEngComm 9, 1245–1251 (2007)CrossRefGoogle Scholar
  92. 92.
    H.O. Fabritius et al., Functional adaptation of crustacean exoskeletal elements through structural and compositional diversity: a combined experimental and theoretical study. Bioinspiration Biomimetics 11, 55006 (2016)CrossRefGoogle Scholar
  93. 93.
    R. Dillaman, S. Hequembourg, M. Gay, Early pattern of calcification in the dorsal carapace of the blue crab, Callinectes sapidus. J. Morphol. 263, 356–374 (2005)CrossRefGoogle Scholar
  94. 94.
    H.O. Fabritius, C. Sachs, P.R. Triguero, D. Raabe, Influence of structural principles on the mechanics of a biological fiber-based composite material with hierarchical organization: the exoskeleton of the lobster Homarus americanus. Adv. Mater. 21, 391–400 (2009)CrossRefGoogle Scholar
  95. 95.
    H.-O. Fabritius et al., Correlation of structure, composition and local mechanical properties in the dorsal carapace of the edible crab Cancer pagurus. Z. Krist. 227, 766–776 (2012)Google Scholar
  96. 96.
    S. Ruangchai, C. Reisecker, S. Hild, A. Ziegler, The architecture of the joint head cuticle and its transition to the arthrodial membrane in the terrestrial crustacean Porcellio scaber. J. Struct. Biol. 182, 22–35 (2013)CrossRefGoogle Scholar
  97. 97.
    B. Seidl et al., Ultrastructure and mineral distribution in the tergite cuticle of the beach isopod Tylos europaeus Arcangeli, 1938. J. Struct. Biol. 174, 512–526 (2011)CrossRefGoogle Scholar
  98. 98.
    H. Fabritius, C. Sachs, D. Raabe, S. Nikolov, M. Friák, J. Neugebauer, Chitin in the exoskeletons of arthropoda: from ancient design to novel materials science, in Chitin: Formation and Diagenesis, ed. by N.S. Gupta (Springer, Berlin, 2011), pp. 35–60CrossRefGoogle Scholar
  99. 99.
    J. Huber, H.-O. Fabritius, E. Griesshaber, A. Ziegler, Function-related adaptations of ultrastructure, mineral phase distribution and mechanical properties in the incisive cuticle of mandibles of Porcellio scaber Latreille, 1804. J. Struct. Biol. 188, 1–15 (2014)CrossRefGoogle Scholar
  100. 100.
    D. Klocke, H. Schmitz, Water as a major modulator of the mechanical properties of insect cuticle. Acta Biomater. 7, 2935–2942 (2011)CrossRefGoogle Scholar
  101. 101.
    D. Taylor, J.-H.J.-H. Dirks, Shape optimization in exoskeletons and endoskeletons: a biomechanics analysis. J. R. Soc. Interface 9, 3480–3489 (2012)CrossRefGoogle Scholar
  102. 102.
    J.-H. Dirks, E. Parle, D. Taylor, Fatigue of insect cuticle. J. Exp. Biol. 216, 1924–1927 (2013)CrossRefGoogle Scholar
  103. 103.
    C. Sachs, H. Fabritius, D. Raabe, Experimental investigation of the elastic-plastic deformation of mineralized lobster cuticle by digital image correlation. J. Struct. Biol. 155, 409–425 (2006)CrossRefGoogle Scholar
  104. 104.
    C. Sachs, H. Fabritius, D. Raabe, Hardness and elastic properties of dehydrated cuticle from the lobster Homarus americanus obtained by nanoindentation. J. Mater. Res. 21, 1987–1995 (2006)CrossRefGoogle Scholar
  105. 105.
    C. Sachs, H. Fabritius, D. Raabe, Influence of microstructure on deformation anisotropy of mineralized cuticle from the lobster Homarus americanus. J. Struct. Biol. 161, 120–132 (2008)CrossRefGoogle Scholar
  106. 106.
    A.C. Neville, D.A. Parry, J. Woodhead-Galloway, The chitin crystallite in arthropod cuticle. J. Cell Sci. 21, 73–82 (1976)Google Scholar
  107. 107.
    Z. Střelcová, P. Kulhánek, M. Friák, H.-O. Fabritius, M. Petrov, J. Neugebauer, J. Koča, The structure and dynamics of chitin nanofibrils in an aqueous environment revealed by molecular dynamics simulations. RSC Adv. 6, 30710–30721 (2016)Google Scholar
  108. 108.
    M.M. Giraud-Guille, Fine structure of the chitin-protein system in the crab cuticle. Tissue Cell 16, 75–92 (1984)CrossRefGoogle Scholar
  109. 109.
    P.Y. Chen, A.Y.M. Lin, J. McKittrick, M.A. Meyers, Structure and mechanical properties of crab exoskeletons. Acta Biomater. 4, 587–596 (2008)CrossRefGoogle Scholar
  110. 110.
    M. Erko et al., Micro- and nano-structural details of a spider’ s filter for substrate vibrations: relevance for low-frequency signal transmission. R. Soc. Interface 12, 2014111 (2015)CrossRefGoogle Scholar
  111. 111.
    E. Parle, J.H. Dirks, D. Taylor, Damage, repair and regeneration in insect cuticle: the story so far, and possibilities for the future. Arthropod Struct. Dev. 46, 49–55 (2017)CrossRefGoogle Scholar
  112. 112.
    D. Raabe, C. Sachs, P. Romano, The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater. 53, 4281–4292 (2005)CrossRefGoogle Scholar
  113. 113.
    F. Boßelmann, P. Romano, H. Fabritius, D. Raabe, M. Epple, The composition of the exoskeleton of two crustacea: the American lobster Homarus americanus and the edible crab Cancer pagurus. Thermochim. Acta 463, 65–68 (2007)CrossRefGoogle Scholar
  114. 114.
    S. Kinoshita, Structural Colors in the Realm of Nature (Word Scientific Publishing, Singapore, 2008)CrossRefGoogle Scholar
  115. 115.
    P.R. Andrew, D. McKenzie, M. Large, Multilayer reflectors in animals using green and gold beetles as contrasting examples. J. Exp. Biol. 201, 1307–1313 (1998)Google Scholar
  116. 116.
    B.D. Wilts, K. Michielsen, H. De Raedt, D.G. Stavenga, Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal. J. R. Soc. Interface 9, 1609–1614 (2012)CrossRefGoogle Scholar
  117. 117.
    V. Saranathan et al., Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales. Proc. Natl. Acad. Sci. 107, 11676–11681 (2010)CrossRefGoogle Scholar
  118. 118.
    X. Wu, A. Erbe, D. Raabe, H.O. Fabritius, Extreme optical properties tuned through phase substitution in a structurally optimized biological photonic polycrystal. Adv. Funct. Mater. 23, 3615–3620 (2013)CrossRefGoogle Scholar
  119. 119.
    H. Ghiradella, Insect cuticular surface modifications: scales and other structural formations. Adv. In Insect Phys. 38, 135–180 (2010)CrossRefGoogle Scholar
  120. 120.
    D. Hull, T.W. Clyne, An Introduction to Composite Materials (Cambridge University Press, Cambridge, 1996)CrossRefGoogle Scholar
  121. 121.
    K. Jin, X. Feng, Z. Xu, Mechanical properties of chitin-protein interfaces: a molecular dynamics study. Bionanoscience 3, 312–320 (2013)CrossRefGoogle Scholar
  122. 122.
    Z. Yu, D. Lau, Molecular dynamics study on stiffness and ductility in chitin–protein composite. J. Mater. Sci. 50, 7149–7157 (2015)CrossRefGoogle Scholar
  123. 123.
    S. Nikolov et al., Revealing the design principles of high-performance biological composites using ab initio and multiscale simulations: the example of lobster cuticle. Adv. Mater. 22, 519–526 (2010)CrossRefGoogle Scholar
  124. 124.
    F.G. Barth, A Spider’s World: Senses and Behavior (Springer Science & Business Media, Berlin, 2013)Google Scholar
  125. 125.
    J. Lian, J. Wang, Microstructure and mechanical anisotropy of crab Cancer magister exoskeletons. Exp. Mech. 54, 229–239 (2014)CrossRefGoogle Scholar
  126. 126.
    H. Fabritius, C. Sachs, D. Raabe, S. Nikolov, M. Friák, J. Neugebauer, Chitin in the exoskeletons of Arthropoda: From ancient design to novel materials science, Chitin: formation and diagenesis, ed. By S.N. Gupta (Springer, Germany, 2011)Google Scholar
  127. 127.
    E. Degtyar, M.J. Harrington, Y. Politi, P. Fratzl, The mechanical role of metal ions in biogenic protein-based materials. Angew. Chemie Int. Ed. 53, 12026–12044 (2014)CrossRefGoogle Scholar
  128. 128.
    J.F.V. Vincent, Arthropod cuticle: a natural composite shell system. Compos. Part A Appl. Sci. Manuf. 33, 1311–1315 (2002)CrossRefGoogle Scholar
  129. 129.
    S.R. Cohen, E. Kalfon-Cohen, Dynamic nanoindentation by instrumented nanoindentation and force microscopy: a comparative review. Beilstein J. Nanotechnol. 4, 815–833 (2013)CrossRefGoogle Scholar
  130. 130.
    D.M. Ebenstein, L.A. Pruitt, Nanoindentation of biological materials. Nano Today 1, 26–33 (2006)CrossRefGoogle Scholar
  131. 131.
    I. Zlotnikov, E. Zolotoyabko, P. Fratzl, Nano-scale modulus mapping of biological composite materials: theory and practice. Prog. Mater Sci. 87, 292–320 (2017)CrossRefGoogle Scholar
  132. 132.
    I. Zlotnikov et al., In situ elastic modulus measurements of ultrathin protein-rich organic layers in biosilica: towards deeper understanding of superior resistance to fracture of biocomposites. RSC Adv. 3, 5798 (2013)CrossRefGoogle Scholar
  133. 133.
    B. Bayerlein et al., Inherent role of water in damage tolerance of the prismatic mineral-organic biocomposite in the shell of Pinna nobilis. Adv. Funct. Mater. 26, 3663–3669 (2016)CrossRefGoogle Scholar
  134. 134.
    B. Bar-On, B. Bayerlein, H. Blumtritt, I. Zlotnikov, Dynamic response of a single interface in a biocomposite structure. Phys. Rev. Lett. 115, 1–5 (2015)CrossRefGoogle Scholar
  135. 135.
    S.L. Young et al., A spider’s biological vibration filter: micromechanical characteristics of a biomaterial surface. Acta Biomater. 10, 4832–4842 (2014)CrossRefGoogle Scholar
  136. 136.
    B. Bar-On, F.G. Barth, P. Fratzl, Y. Politi, Multiscale structural gradients enhance the biomechanical functionality of the spider fang. Nat. Commun. 5, 3894 (2014)CrossRefGoogle Scholar
  137. 137.
    M.-M. Giraud-Guille, Plywood structures in nature. Biomaterials 3, 221–227 (1998)Google Scholar
  138. 138.
    F.G. Barth, Microfiber reinforcement of an arthropod cuticle. Laminated composite material in biology. Z. Zellforsch. Mikrosk. Anat. 144, 409–433 (1973)CrossRefGoogle Scholar
  139. 139.
    S.A. Wainwright, Mechanical Design in Organisms (Princeton University Press, Princeton, 1982)Google Scholar
  140. 140.
    B. Bar-On, H.D. Wagner, Structural motifs and elastic properties of hierarchical biological tissues—a review. J. Struct. Biol. 183, 149–164 (2013)CrossRefGoogle Scholar
  141. 141.
    D. Labonte, A.K. Lenz, M.L. Oyen, On the relationship between indentation hardness and modulus, and the damage resistance of biological materials. Acta Biomater. 57, 373–383 (2017)CrossRefGoogle Scholar
  142. 142.
    D. Tabor, The hardness of solids. Rev. Phys. Technol. 1, 145 (1970)CrossRefGoogle Scholar
  143. 143.
    A.C. Fischer-Cripps, Introduction to Contact Mechanics. Springer Science+Business Media, LLC (Springer US) (2007)Google Scholar
  144. 144.
    B. Bhushan, Principles and Applications of Tribology (Wiley, New York, 2013)CrossRefGoogle Scholar
  145. 145.
    A.K. Bhattacharya, W.D. Nix, Finite element simulation of indentation experiments. Int. J. Solids Struct. 24, 881–891 (1988)CrossRefGoogle Scholar
  146. 146.
    A.K. Bhattacharya, W.D. Nix, Finite element analysis of cone indentation. Int. J. Solids Struct. 27, 1047–1058 (1991)CrossRefGoogle Scholar
  147. 147.
    M.F. Ashby, L.J. Gibson, Cellular Solids: Structure and Properties (Press Syndicate of the University of Cambridge, Cambridge, 1997)Google Scholar
  148. 148.
    F.W. Zok, A. Miserez, Property maps for abrasion resistance of materials. Acta Mater. 55, 6365–6371 (2007)CrossRefGoogle Scholar
  149. 149.
    S. Amini, A. Miserez, Wear and abrasion resistance selection maps of biological materials. Acta Biomater. 9, 7895–7907 (2013)CrossRefGoogle Scholar
  150. 150.
    D.N. Moses, M.G. Pontin, J.H. Waite, F.W. Zok, Effects of hydration on mechanical properties of a highly sclerotized tissue. Biophys. J. 94, 3266–3272 (2008)CrossRefGoogle Scholar
  151. 151.
    Y. Shelef, B. Bar-On, Surface protection in bio-shields via a functional soft skin layer: lessons from the turtle shell. J. Mech. Behav. Biomed. Mater. 1 (2017)Google Scholar
  152. 152.
    S. Suresh, Graded materials for resistance to contact deformation and damage. Science 292, 2447–2451 (2001)CrossRefGoogle Scholar
  153. 153.
    J.G. Kunkel, W. Nagel, M.J. Jercinovic, Mineral fine structure of the American lobster cuticle. J. Shellfish Res. 31, 512–526 (2012)CrossRefGoogle Scholar
  154. 154.
    H. Hertz, Üeber die berührung fester elastischer Körper. J. fur die reine und Angew. Math. 92, 156–171 (1882)Google Scholar
  155. 155.
    K.L. Johnson et al., Contact Mechanics (Cambridge University Press, Cambridge, 1985)CrossRefGoogle Scholar
  156. 156.
    C.C. Broomell, F.W. Zok, J.H. Waite, Role of transition metals in sclerotization of biological tissue. Acta Biomater. 4, 2045–2051 (2008)CrossRefGoogle Scholar
  157. 157.
    R.O. Ritchie, The conflicts between strength and toughness. Nat. Mater. 10, 817–822 (2011)CrossRefGoogle Scholar
  158. 158.
    F.D. Fischer, O. Kolednik, J. Predan, H. Razi, P. Fratzl, Crack driving force in twisted plywood structures. Acta Biomater. 55, 349–359 (2017)CrossRefGoogle Scholar
  159. 159.
    N. Suksangpanya, N.A. Yaraghi, D. Kisailus, P. Zavattieri, Twisting cracks in Bouligand structures. J. Mech. Behav. Biomed. Mater. 76, 38–57 (2017)CrossRefGoogle Scholar
  160. 160.
    S.M. Chen, H.L. Gao, Y.B. Zhu, H.B. Yao, L.B. Mao, Q.Y. Song, S.H. Yu, Biomimetic twisted plywood structural materials. Nat. Sci. Rev. 5(5), 703–714 (2018)CrossRefGoogle Scholar
  161. 161.
    N. Suksangpanya, N.A. Yaraghi, R.B. Pipes, D. Kisailus, P. Zavattieri, Crack twisting and toughening strategies in Bouligand architectures. Int J Solids Struct. 150, 83–106 (2018)CrossRefGoogle Scholar
  162. 162.
    A.G. Atkins, Y.-W. Mai, Elastic and Plastic Fracture: Metals, Polymers, Ceramics, Composites, Biological Materials (Ellis Horwood; Halsted Press, 1985)Google Scholar
  163. 163.
    R.H. Hackman, Chitin and the fine structure of cuticles, in Chitin and Benzoylphenyl Ureas, pp. 1–32 (1987)Google Scholar
  164. 164.
    M.M. Giraud-Guille, H. Chanzy, R. Voung, Chitin crystals in arthropod cuticles revealed by diffraction contrast transmission electron microscopy. J. Struct. Biol. 103, 232–240 (1990)CrossRefGoogle Scholar
  165. 165.
    M.H. Dickinson et al., How animals move: an integrative view. Source Sci. New Ser. 288, 100–106 (2000)Google Scholar
  166. 166.
    J.-H.J.-H. Dirks, D. Taylor, Fracture toughness of locust cuticle. J. Exp. Biol. 215, 1502–1508 (2012)CrossRefGoogle Scholar
  167. 167.
    J.H. Dirks, D. Taylor, Veins improve fracture toughness of insect wings. PLoS One 7, e43411 (2012)CrossRefGoogle Scholar
  168. 168.
    J. Sun, B. Bhushan, The structure and mechanical properties of dragonfly wings and their role on flyability. Comptes Rendus—Mec. 340, 3–17 (2012)CrossRefGoogle Scholar
  169. 169.
    N.S. Ha, T.L. Jin, N.S. Goo, H.C. Park, Anisotropy and non-homogeneity of an Allomyrina dichotoma beetle hind wing membrane. Bioinspiration Biomimetics 6, 46003 (2011)CrossRefGoogle Scholar
  170. 170.
    M. Sun et al., Influence of cuticle nanostructuring on the wetting behaviour/states on cicada wings. PLoS One 7, e35056 (2012)CrossRefGoogle Scholar
  171. 171.
    S.A. Combes, T.L. Daniel, Flexural stiffness in insect wings I. Scaling and the influence of wing venation. J. Exp. Biol. 206, 2979–2987 (2003)CrossRefGoogle Scholar
  172. 172.
    S.A. Combes, Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending. J. Exp. Biol. 206, 2989–2997 (2003)CrossRefGoogle Scholar
  173. 173.
    S.A. Combes, T.L. Daniel, Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta. J. Exp. Biol. 206, 2999–3006 (2003)CrossRefGoogle Scholar
  174. 174.
    A.M. Mountcastle, S.A. Combes, Wing flexibility enhances load-lifting capacity in bumblebees. Proc. Biol. Sci. 280, 20130531 (2013)CrossRefGoogle Scholar
  175. 175.
    F.O. Lehmann, The mechanisms of lift enhancement in insect flight. Naturwissenschaften 91, 101–122 (2004)CrossRefGoogle Scholar
  176. 176.
    S.P. Sane, The aerodynamics of insect flight. J. Exp. Biol. 206, 4191–4208 (2003)CrossRefGoogle Scholar
  177. 177.
    L. Zhao, Q. Huang, X. Deng, S.P. Sane, Aerodynamic effects of flexibility in flapping wings. J. R. Soc. Interface 7, 485–497 (2010)CrossRefGoogle Scholar
  178. 178.
    T. Nakata, H. Liu, Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach. Proc. Biol. Sci. 279, 722–731 (2012)CrossRefGoogle Scholar
  179. 179.
    H. Izumi, M. Suzuki, S. Aoyagi, T. Kanzaki, Realistic imitation of mosquito’s proboscis: electrochemically etched sharp and jagged needles and their cooperative inserting motion. Sensors Actuators A Phys. 165, 115–123 (2011)CrossRefGoogle Scholar
  180. 180.
    M.K. Ramasubramanian, O.M. Barham, V. Swaminathan, Mechanics of a mosquito bite with applications to microneedle design. Bioinspiration Biomimetics 3, 1–10 (2008)CrossRefGoogle Scholar
  181. 181.
    Z.-L. Zhao et al., Structures, properties, and functions of the stings of honey bees and paper wasps: a comparative study. Biol. Open 4, 921–928 (2015)CrossRefGoogle Scholar
  182. 182.
    M.A. Meyers, A.Y.M. Lin, Y.S. Lin, E.A. Olevsky, S. Georgalis, The cutting edge: sharp biological materials. JOM 60, 19–24 (2008)CrossRefGoogle Scholar
  183. 183.
    A. van der Meijden, T. Kleinteich, A biomechanical view on stinger diversity in scorpions. J. Anat. 230(4), 497–509 (2017)CrossRefGoogle Scholar
  184. 184.
    C. Broeckhoven, A. du Plessis, Has snake fang evolution lost its bite? New insights from a structural mechanics viewpoint. Biol. Lett. 13(8), 20170293 (2017)CrossRefGoogle Scholar
  185. 185.
    B. Bhushan, Insects Locomotion, Piercing, Sucking and Stinging Mechanisms, in Biomimetics. Springer Series in Materials Science, vol. 279 (Springer, Cham, 2018)Google Scholar
  186. 186.
    B. Bar-On, On the form and bio-mechanics of venom-injection elements. Acta Biomater. 85, 263–271 (2019)CrossRefGoogle Scholar
  187. 187.
    Z. Liu et al., Enhanced protective role in materials with gradient structural orientations: lessons from nature. Acta Biomater. 44, 31–40 (2016)CrossRefGoogle Scholar
  188. 188.
    A. van der Meijden, T. Kleinteich, A biomechanical view on stinger diversity in scorpions. J. Anat. 230, 497–509 (2017)CrossRefGoogle Scholar
  189. 189.
    W. Gnatzy, J.J. Tautz, Ultrastructure and mechanical properties of an insect mechanoreceptor: stimulus-transmitting structures and sensory apparatus of the cereal filiform hairs of Gryllus. Cell Tissue Res. 213, 441–463 (1980)Google Scholar
  190. 190.
    P. Fratzl, F.G. Barth, Biomaterial systems for mechanosensing and actuation. Nature 462, 442–448 (2009)CrossRefGoogle Scholar
  191. 191.
    M.E. McConney et al., Surface force spectroscopic point load measurements and viscoelastic modelling of the micromechanical properties of air flow sensitive hairs of a spider (Cupiennius salei). J. R. Soc. Interface 6, 681–694 (2009)CrossRefGoogle Scholar
  192. 192.
    F.G. Barth, Spider mechanoreceptors. Curr. Opin. Neurobiol. 14, 415–422 (2004)CrossRefGoogle Scholar
  193. 193.
    H.-E. Dechant, F.G. Rammerstorfer, F.G. Barth, Arthropod touch reception: Stimulus transformation and finite element model of spider tactile hairs. J. Comp. Physiol.—A Sensory, Neural Behav. Physiol. 187, 313–322 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yael Politi
    • 1
    Email author
  • Benny Bar-On
    • 2
  • Helge-Otto Fabritius
    • 3
  1. 1.Department of BiomaterialsMax Planck Institute of Colloids and InterfacesPotsdamGermany
  2. 2.Department of Mechanical EngineeringBen-Gurion University of the NegevBeer ShevaIsrael
  3. 3.Department Microstructure Physics and Alloy DesignMax-Planck-Institut für Eisenforschung GmbHDüsseldorfGermany

Personalised recommendations