Skip to main content

Mechanics of Arthropod Cuticle-Versatility by Structural and Compositional Variation

  • Chapter
  • First Online:
Architectured Materials in Nature and Engineering

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 282))

Abstract

The arthropod cuticle may be seen as a multifunctional material displaying a wide range of physical properties. The materials properties of the cuticle are brought about by compositional and structural gradients at multiple hierarchical levels. In the following chapter we first discuss the main components of the cuticle, namely, chitin, proteins, water, mineral and tanning agents and their relevance in determining the mechanical properties of the cuticle. We then describe the hierarchical organization of the cuticle and how it contributes to tuning the mechanical properties of the material. Finally we show several examples of cuticular structures with increasing structural complexity to exemplify the discussed principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.C. Neville, Biology of the Arthropod Cuticle (Springer, Berlin, 1975)

    Book  Google Scholar 

  2. S. Manton, The Arthropoda. Habits, Functional Morphology, and Evolution (Clarendon Press, Oxford, 1977)

    Google Scholar 

  3. H.R. Hepburn, The Insect Integument (Elsevier Scientific Publishing Company, Amsterdam, 1976)

    Google Scholar 

  4. J. Blackwell, M.A. Weih, Structure of chitin-protein complexes: ovipositor of the ichneumon fly Megarhyssa. J. Mol. Biol. 137, 49–60 (1980)

    Article  CAS  Google Scholar 

  5. N. Eldredge, Arthropod Fossils and Phylogeny (Columbia University Press, New York, 1998)

    Google Scholar 

  6. R.C. Brusca, Unraveling the history of arthropod biodiversification. Ann. Missouri Bot. Gard. 87, 13–25 (2000)

    Article  Google Scholar 

  7. N.F. Hadley, The arthropod cuticle. Sci. Am. 255, 98–106 (1986)

    Article  Google Scholar 

  8. B. Moussian, Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochem. Mol. Biol. 40, 363–375 (2010)

    Article  CAS  Google Scholar 

  9. B. Moussian, Molecular model of skeletal organization and differentiation, in Extracellular Composite Matrices in Arthropods, ed. by E. Cohen, B. Moussian (Springer International Publishing, Berlin, 2016), pp. 67–87

    Chapter  Google Scholar 

  10. S.B. Murray, A.C. Neville, The role of pH, temperature and nucleation in the formation of cholesteric liquid crystal spherulites from chitin and chitosan. Int. J. Biol. Macromol. 22, 137–144 (1998)

    Article  CAS  Google Scholar 

  11. S.J. Hamodrakas, J.H. Willis, V.A. Iconomidou, A structural model of the chitin-binding domain of cuticle proteins. Insect Biochem. Mol. Biol. 32, 1577–1583 (2002)

    Article  CAS  Google Scholar 

  12. R. Yu et al., Helicoidal organization of chitin in the cuticle of the migratory locust requires the function of the chitin deacetylase 2 enzyme (LmCDA2). J. Biol. Chem. 291, 24352–24363 (2016)

    Article  CAS  Google Scholar 

  13. M. Locke, The structure and formation of the cuticulin layer in the epicuticle of an insect, Calpodes ethlius (Lepidoptera, Hesperiidae). J. Morphol. 118, 461–494 (1966)

    Article  CAS  Google Scholar 

  14. R. Zuber et al., The ABC transporter Snu drives formation of the lipid-based inward and outward barrier in the skin of Drosophila (2017)

    Google Scholar 

  15. M. Locke, D. Ph, Pore canals and related structures in insect cuticle. J. Biophys. Biochem. Cytol. 10, 589–618 (1961)

    Article  CAS  Google Scholar 

  16. R.D. Roer, R.M. Dillaman, Molt-related change in integumental structure and function, in The Crustacean Integument Morphology and Biochemistry, vol. 240, ed. by M.N. Horst, J. Freeman (CRC Press, Boca Raton, FL, 1993)

    Google Scholar 

  17. Y. Bouligand, Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue Cell 4, 189–217 (1972)

    Article  CAS  Google Scholar 

  18. M. Rinaudo, Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603–632 (2006)

    Article  CAS  Google Scholar 

  19. B. Focher, A. Naggi, G. Torri, A. Cosani, M. Terbojevich, Structural differences between chitin polymorphs and their precipitates from solutions—evidence from CP-MAS 13C-NMR, FT-IR and FT-Raman spectroscopy. Carbohydr. Polym. 17, 97–102 (1992)

    Article  CAS  Google Scholar 

  20. P. Sikorski, R. Hori, M. Wada, Revisit of alpha-chitin crystal structure using high resolution X-ray diffraction data. Biomacromol 10, 1100–1105 (2009)

    Article  CAS  Google Scholar 

  21. K. Kobayashi, S. Kimura, E. Togawa, M. Wada, Crystal transition between hydrate and anhydrous β-chitin monitored by synchrotron X-ray fiber diffraction. Carbohydr. Polym. 79, 882–889 (2010)

    Article  CAS  Google Scholar 

  22. S. Muthukrishnan, H. Merzendorfer, Y. Arakane, Q. Yang, Chitin metabolic pathways in insects and their regulation, in Extracellular Composite Matrices in Arthropods, ed. by E. Cohen, B. Moussian (Springer International Publishing, Berlin, 2016), pp. 31–65

    Chapter  Google Scholar 

  23. H. Merzendorfer, Insect chitin synthases: a review. J. Comp. Physiol. B. 176, 1–15 (2006)

    Article  CAS  Google Scholar 

  24. B. Moussian et al, Deciphering the genetic programme triggering timely and spatially-regulated chitin deposition. PLOS Genet. 1–24 (2015)

    Google Scholar 

  25. J.H. Willis, Cuticular Proteins in Insects and Crustaceans. Integr. Comp. Biol. 39, 600–609 (1999)

    CAS  Google Scholar 

  26. S. Luschnig, T. Bätz, K. Armbruster, M.A. Krasnow, Serpentine and vermiform encode matrix proteins with chitin binding and deacetylation domains that limit tracheal tube length in Drosophila. Curr. Biol. 16, 186–194 (2006)

    Article  CAS  Google Scholar 

  27. X. Zhao et al., Identification and expression of cuticular protein genes based on Locusta migratoria transcriptome. Sci. Rep. 7, 45462 (2017)

    Article  CAS  Google Scholar 

  28. D.L. Cox, J.H. Willis, Post-translational modifications of the cuticular proteins of Hyalophora cecropia from different anatomical regions and metamorphic stages. Insect Biochem. 17, 469–484 (1987)

    Article  CAS  Google Scholar 

  29. S.O. Andersen, Biochemistry of insect cuticle. Ann. Rev. Entomol. 24, 29–61 (1979)

    Article  CAS  Google Scholar 

  30. M.G.M. Pryor, On the hardening of the ootheca of Blatta orientalis. Proc. R. Soc. B Biol. Sci. 128, 378–393 (1940)

    CAS  Google Scholar 

  31. S. Andersen, M. Peter, P. Roepstorff, Cuticular sclerotization in insects. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 113, 689–705 (1996)

    Article  Google Scholar 

  32. S.S. Chaudhari et al., Knickkopf protein protects and organizes chitin in the newly synthesized insect exoskeleton 1–6 (2011)

    Google Scholar 

  33. R. Tajiri, N. Ogawa, H. Fujiwara, T. Kojima, Mechanical control of whole body shape by a single cuticular protein Obstructor-E in Drosophila melanogaster. PLoS Genet. 13, e1006548 (2017)

    Article  CAS  Google Scholar 

  34. S. Abehsera et al., MARS: a protein family involved in the formation of vertical skeletal elements. J. Struct. Biol. 198, 92–102 (2017)

    Article  CAS  Google Scholar 

  35. J.H. Willis, Structural cuticular proteins from arthropods: annotation, nomenclature, and sequence characteristics in the genomics era. Insect Biochem. Mol. Biol. 40, 189–204 (2010)

    Article  CAS  Google Scholar 

  36. Y. Tan et al., Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient. Nat. Chem. Biol. 11, 488–495 (2015)

    Article  CAS  Google Scholar 

  37. J.E. Rebers, L.M. Riddiford, Structure and expression of a Manduca sexta larval cuticle gene homologous to Drosophila cuticle genes. J. Mol. Biol. 203, 411–423 (1988)

    Article  CAS  Google Scholar 

  38. J.E. Rebers, J.H. Willis, A conserved domain in arthropod cuticular proteins binds chitin. Insect Biochem. Mol. Biol. 31, 1083–1093 (2001)

    Article  CAS  Google Scholar 

  39. S. Mun et al., Cuticular protein with a low complexity sequence becomes cross-linked during insect cuticle sclerotization and is required for the adult molt. Sci. Rep. 5, 10484 (2015)

    Article  Google Scholar 

  40. S.O. Andersen, Are structural proteins in insect cuticles dominated by intrinsically disordered regions? Insect Biochem. Mol. Biol. 41, 620–627 (2011)

    Article  CAS  Google Scholar 

  41. Y. Zhou et al., Distribution of cuticular proteins in different structures of adult Anopheles gambiae. Insect Biochem. Mol. Biol. 75, 45–57 (2016)

    Article  CAS  Google Scholar 

  42. T. Weis-Fogh, A rubber-like protein in insect cuticle. J. Exp. Biol. 37, 889–907 (1960)

    CAS  Google Scholar 

  43. S.O. Andersen, Characterization of a new type of cross-linkage in resilin, a rubber-like protein. Biochim. Biophys. Acta 69, 249–262 (1963)

    Article  CAS  Google Scholar 

  44. H.C. Bennet-Clark, E.C. Lucey, The jump of the flea: a study of the energetics and a model of the mechanism. J. Exp. Biol. 47, 59–67 (1967)

    CAS  Google Scholar 

  45. J. Michels, E. Appel, S.N. Gorb, Resilin—the pliant protein, in Extracellular Composite Matrices in Arthropods, ed. by E. Cohen, B. Moussian (Springer International Publishing, Berlin, 2016), pp. 89–136

    Chapter  Google Scholar 

  46. A.C. Neville, Biology of Fibrous Composites: Development Beyond the Cell Membrane (Cambridge University Press, New York, 1993)

    Book  Google Scholar 

  47. J.F.V. Vincent, U.G.K. Wegst, Design and mechanical properties of insect cuticle. Arthropod Struct. Dev. 33, 187–199 (2004)

    Article  Google Scholar 

  48. V.A. Iconomidou, G.D. Chryssikos, V. Gionis, J.H. Willis, S.J. Hamodrakas, ‘Soft’-cuticle protein secondary structure as revealed by FT-Raman, ATR FT-IR and CD spectroscopy. Insect Biochem. Mol. Biol. 31, 877–885 (2001)

    Article  CAS  Google Scholar 

  49. V.A. Iconomidou, J.H. Willis, S.J. Hamodrakas, Unique features of the structural model of ‘hard’ cuticle proteins: implications for chitin-protein interactions and cross-linking in cuticle. Insect Biochem. Mol. Biol. 35, 553–560 (2005)

    Article  CAS  Google Scholar 

  50. G. Fraenkel, K.M. Rudall, The structure of insect cuticles. Proc. R. Soc. London. Ser. B 134, 111–143 (1947)

    Article  CAS  Google Scholar 

  51. E. Atkins, Conformations in polysaccharides and complex carbohydrates. J. Biosci. 8, 375–387 (1985)

    Article  CAS  Google Scholar 

  52. C. Valverde Serrano et al., Ordering of protein and water molecules at their interfaces with chitin nano-crystals. J. Struct. Biol. 193, 124–131 (2016)

    Article  CAS  Google Scholar 

  53. R.S. Cornman, The distribution of GYR- and YLP-like motifs in Drosophila suggests a general role in cuticle assembly and other protein-protein interactions. PLoS ONE 5, 1–10 (2010)

    Article  CAS  Google Scholar 

  54. J.E. Hillerton, J.F. Vincent, The specific location of zinc in insect mandibles. J. Exp. Biol. 101, 333–336 (1982)

    CAS  Google Scholar 

  55. J.E. Hillerton, J.F.V. Vincent, Consideration of the importance of hydrophobic interactions in stabilizing insect cuticle. Int. J. Biol. Macromol. 5, 163–166 (1983)

    Article  CAS  Google Scholar 

  56. J.F.V. Vincent, J.E. Hillerton, The tanning of insect cuticle—a critical review and a revised mechanism. J. Insect Physiol. 25, 653–658 (1979)

    Article  CAS  Google Scholar 

  57. S.E. Reynolds, The mechanism of plasticization of the abdominal cuticle in Rhodnius. J. Exp. Biol. 62, 81–98 (1975)

    CAS  Google Scholar 

  58. R.H. Hackman, M. Goldberg, Comparative study of some expanding arthropod cuticles: the relation between composition, structure and function. J. Insect Physiol. 33, 39–50 (1987)

    Article  CAS  Google Scholar 

  59. Y. Politi et al., A spider’s fang: how to design an injection needle using chitin-based composite material. Adv. Funct. Mater. 22, 2519–2528 (2012)

    Article  CAS  Google Scholar 

  60. Y. Politi et al., Nano-channels in the spider fang for the transport of Zn ions to cross-link His-rich proteins pre-deposited in the cuticle matrix. Arthropod Struct. Dev. 46, 30–38 (2016)

    Article  Google Scholar 

  61. M. Erko et al., Structural and mechanical properties of the arthropod cuticle: comparison between the fang of the spider Cupiennius salei and the carapace of American lobster Homarus americanus. J. Struct. Biol. 183, 172–179 (2013)

    Article  CAS  Google Scholar 

  62. J. Eric Hillerton, B. Robertson, J.F.V. Vincent, The presence of zinc or manganese as the predominant metal in the mandibles of adult, stored-product beetles. J. Stored Prod. Res. 20, 133–137 (1984)

    Article  Google Scholar 

  63. R. Schofield, H. Lefevre, Short communication: high concentrations of zinc in the fangs and manganese in the teeth of spiders. J. Exp. Biol. 144, 577 (1989)

    CAS  Google Scholar 

  64. D.L.J. Quicke, P. Wyeth, J.D. Fawke, H.H. Basibuyuk, J.F.V. Vincent, Manganese and zinc in the ovipositors and mandibles of hymenopterous insects. Zool. J. Linn. Soc. 124, 387–396 (1998)

    Article  Google Scholar 

  65. R.M.S. Schofield, H.W. Lefevre, PIXE-STIM microtomography: zinc and manganese concentrations in a scorpion stinger. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 72, 104–110 (1992)

    Article  Google Scholar 

  66. R.M.S. Schofield, Zinc is incorporated into cuticular ‘tools’ after ecdysis: the time course of the zinc distribution in ‘tools’ and whole bodies of an ant and a scorpion. J. Insect Physiol. 49, 31–44 (2003)

    Article  CAS  Google Scholar 

  67. T.D. Morgan, P. Baker, K.J. Kramer, H.H. Basibuyuk, D.L.J. Quicke, Metals in mandibles of stored product insects: do zinc and manganese enhance the ability of larvae to infest seeds? J. Stored Prod. Res. 39, 65–75 (2003)

    Article  CAS  Google Scholar 

  68. T. Schöberl, I.L. Jäger, Wet or dry—hardness, stiffness and wear resistance of biological materials on the micron scale. Adv. Eng. Mater. 8, 1164–1169 (2006)

    Article  CAS  Google Scholar 

  69. B.W. Cribb et al., Insect mandibles—comparative mechanical properties and links with metal incorporation. Naturwissenschaften 95, 17–23 (2008)

    Article  CAS  Google Scholar 

  70. B.W. Cribb et al., Structure, composition and properties of naturally occurring non-calcified crustacean cuticle. Arthropod Struct. Dev. 38, 173–178 (2009)

    Article  CAS  Google Scholar 

  71. E. Degtyar, M.J. Harrington, Y. Politi, P. Fratzl, The mechanical role of metal ions in biogenic protein-based materials. Angewandte. 12026–12044 (2014)

    Google Scholar 

  72. J. Schaefer et al., Aromatic cross-links in insect cuticle: detection by solid-state 13C and 15N NMR. Science 235, 1200–1204 (1987)

    Article  CAS  Google Scholar 

  73. R. Xu, X.I.N. Huang, T.L. Hopkins, K.J. Kramer, Rapid communication catecholamine and histidyl protein cross-linked structures in sclerotized insect cuticle. 9651748 (1997)

    Google Scholar 

  74. S. Zhang, I.-M. Tso, Spider silk: factors affecting mechanical properties and biomimetic applications, in Extracellular Composite Matrices in Arthropods, ed. by E. Cohen, B. Moussian (Springer International Publishing, Berlin, 2016), pp. 489–513

    Chapter  Google Scholar 

  75. K.J. Kramer, T.L. Hopkins, J. Schaefer, Applications of solids NMR to the analysis of insect sclerotized structures. Insect Biochem. Mol. Biol. 25, 1067–1080 (1995)

    Article  CAS  Google Scholar 

  76. J.L. Kerwin et al., Mass spectrometric analysis of catechol-histidine adducts from insect cuticle. Anal. Biochem. 268, 229–237 (1999)

    Article  CAS  Google Scholar 

  77. P. Wappner, L.A. Quesada-Allué, Water loss during cuticle sclerotization in the medfly Ceratitis capitata is independent of catecholamines. J. Insect Physiol. 42, 705–709 (1996)

    Article  CAS  Google Scholar 

  78. S.O. Andersen, Insect cuticular sclerotization: a review. Insect Biochem. Mol. Biol. 40, 166–178 (2010)

    Article  CAS  Google Scholar 

  79. T.L. Hopkins, K.J. Kramer, Insect cuticle sclerotization. Annu. Rev. Entomol. 37, 273–302 (1992)

    Article  CAS  Google Scholar 

  80. K. Hiruma, L.M. Riddiford, Granular phenoloxidase involved in cuticular melanization in the tobacco hornworm: regulation of its synthesis in the epidermis by juvenile hormone. Dev. Biol. 130, 87–97 (1988)

    Article  CAS  Google Scholar 

  81. H. Nakagawa, Y. Hori, S. Sato, T.B. Fitzpatrick, R.L. Martuza, The nature and origin of the melanin macroglobule. J Invest Dermatol 83, 134–139 (1984)

    Article  CAS  Google Scholar 

  82. H. Kayser, Pigments, in Comprehensive Insect Physiology, Biochemistry and Pharmacology, ed. by G.A. Kerkut, L.I. Gilbert (Pergamon Press, New York, 1985)

    Google Scholar 

  83. J.F.V. Vincent, S. Ablett, Hydration and tanning in insect cuticle. J. Insect Physiol. 33, 973–979 (1987)

    Article  Google Scholar 

  84. H.C. Lichtenegger et al., Zinc and mechanical prowess in the jaws of Nereis, a marine worm. Proc. Natl. Acad. Sci. 100, 9144–9149 (2003)

    Article  CAS  Google Scholar 

  85. R.M.S. Schofield et al., Br-rich tips of calcified crab claws are less hard but more fracture resistant: a comparison of biomineralized and heavy-element biomaterials. J. Struct. Biol. 166, 272–287 (2009)

    Article  CAS  Google Scholar 

  86. A. Becker, M. Epple, The mineral phase in the cuticle of two species of Crustacea consists of magnesium calcite, amorphous calcium carbonate and amorphous calcium phosphate. Dalt. Trans. 1814–1820 (2005)

    Google Scholar 

  87. A. Al-Sawalmih et al., Microtexture and chitin/calcite orientation relationship in the mineralized exoskeleton of the American lobster. Adv. Funct. Mater. 18, 3307–3314 (2008)

    Article  CAS  Google Scholar 

  88. H.A. Lowenstam, S. Weiner, On Biomineralization (Oxford University Press, Oxford, 1989)

    Google Scholar 

  89. S. Bentov et al., Enamel-like apatite crown covering amorphous mineral in a crayfish mandible. Nat. Commun. 3, 839 (2012)

    Article  CAS  Google Scholar 

  90. J.C. Weaver et al., The stomatopod dactyl club: a formidable damage-tolerant biological hammer. Science 336, 1275–1280 (2012)

    Article  CAS  Google Scholar 

  91. F. Neues, A. Ziegler, M. Epple, The composition of the mineralized cuticle in marine and terrestrial isopods: a comparative study. CrystEngComm 9, 1245–1251 (2007)

    Article  CAS  Google Scholar 

  92. H.O. Fabritius et al., Functional adaptation of crustacean exoskeletal elements through structural and compositional diversity: a combined experimental and theoretical study. Bioinspiration Biomimetics 11, 55006 (2016)

    Article  CAS  Google Scholar 

  93. R. Dillaman, S. Hequembourg, M. Gay, Early pattern of calcification in the dorsal carapace of the blue crab, Callinectes sapidus. J. Morphol. 263, 356–374 (2005)

    Article  Google Scholar 

  94. H.O. Fabritius, C. Sachs, P.R. Triguero, D. Raabe, Influence of structural principles on the mechanics of a biological fiber-based composite material with hierarchical organization: the exoskeleton of the lobster Homarus americanus. Adv. Mater. 21, 391–400 (2009)

    Article  CAS  Google Scholar 

  95. H.-O. Fabritius et al., Correlation of structure, composition and local mechanical properties in the dorsal carapace of the edible crab Cancer pagurus. Z. Krist. 227, 766–776 (2012)

    CAS  Google Scholar 

  96. S. Ruangchai, C. Reisecker, S. Hild, A. Ziegler, The architecture of the joint head cuticle and its transition to the arthrodial membrane in the terrestrial crustacean Porcellio scaber. J. Struct. Biol. 182, 22–35 (2013)

    Article  Google Scholar 

  97. B. Seidl et al., Ultrastructure and mineral distribution in the tergite cuticle of the beach isopod Tylos europaeus Arcangeli, 1938. J. Struct. Biol. 174, 512–526 (2011)

    Article  CAS  Google Scholar 

  98. H. Fabritius, C. Sachs, D. Raabe, S. Nikolov, M. Friák, J. Neugebauer, Chitin in the exoskeletons of arthropoda: from ancient design to novel materials science, in Chitin: Formation and Diagenesis, ed. by N.S. Gupta (Springer, Berlin, 2011), pp. 35–60

    Chapter  Google Scholar 

  99. J. Huber, H.-O. Fabritius, E. Griesshaber, A. Ziegler, Function-related adaptations of ultrastructure, mineral phase distribution and mechanical properties in the incisive cuticle of mandibles of Porcellio scaber Latreille, 1804. J. Struct. Biol. 188, 1–15 (2014)

    Article  CAS  Google Scholar 

  100. D. Klocke, H. Schmitz, Water as a major modulator of the mechanical properties of insect cuticle. Acta Biomater. 7, 2935–2942 (2011)

    Article  Google Scholar 

  101. D. Taylor, J.-H.J.-H. Dirks, Shape optimization in exoskeletons and endoskeletons: a biomechanics analysis. J. R. Soc. Interface 9, 3480–3489 (2012)

    Article  Google Scholar 

  102. J.-H. Dirks, E. Parle, D. Taylor, Fatigue of insect cuticle. J. Exp. Biol. 216, 1924–1927 (2013)

    Article  Google Scholar 

  103. C. Sachs, H. Fabritius, D. Raabe, Experimental investigation of the elastic-plastic deformation of mineralized lobster cuticle by digital image correlation. J. Struct. Biol. 155, 409–425 (2006)

    Article  CAS  Google Scholar 

  104. C. Sachs, H. Fabritius, D. Raabe, Hardness and elastic properties of dehydrated cuticle from the lobster Homarus americanus obtained by nanoindentation. J. Mater. Res. 21, 1987–1995 (2006)

    Article  CAS  Google Scholar 

  105. C. Sachs, H. Fabritius, D. Raabe, Influence of microstructure on deformation anisotropy of mineralized cuticle from the lobster Homarus americanus. J. Struct. Biol. 161, 120–132 (2008)

    Article  CAS  Google Scholar 

  106. A.C. Neville, D.A. Parry, J. Woodhead-Galloway, The chitin crystallite in arthropod cuticle. J. Cell Sci. 21, 73–82 (1976)

    CAS  Google Scholar 

  107. Z. Střelcová, P. Kulhánek, M. Friák, H.-O. Fabritius, M. Petrov, J. Neugebauer, J. Koča, The structure and dynamics of chitin nanofibrils in an aqueous environment revealed by molecular dynamics simulations. RSC Adv. 6, 30710–30721 (2016)

    Google Scholar 

  108. M.M. Giraud-Guille, Fine structure of the chitin-protein system in the crab cuticle. Tissue Cell 16, 75–92 (1984)

    Article  CAS  Google Scholar 

  109. P.Y. Chen, A.Y.M. Lin, J. McKittrick, M.A. Meyers, Structure and mechanical properties of crab exoskeletons. Acta Biomater. 4, 587–596 (2008)

    Article  Google Scholar 

  110. M. Erko et al., Micro- and nano-structural details of a spider’ s filter for substrate vibrations: relevance for low-frequency signal transmission. R. Soc. Interface 12, 2014111 (2015)

    Article  Google Scholar 

  111. E. Parle, J.H. Dirks, D. Taylor, Damage, repair and regeneration in insect cuticle: the story so far, and possibilities for the future. Arthropod Struct. Dev. 46, 49–55 (2017)

    Article  Google Scholar 

  112. D. Raabe, C. Sachs, P. Romano, The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater. 53, 4281–4292 (2005)

    Article  CAS  Google Scholar 

  113. F. Boßelmann, P. Romano, H. Fabritius, D. Raabe, M. Epple, The composition of the exoskeleton of two crustacea: the American lobster Homarus americanus and the edible crab Cancer pagurus. Thermochim. Acta 463, 65–68 (2007)

    Article  CAS  Google Scholar 

  114. S. Kinoshita, Structural Colors in the Realm of Nature (Word Scientific Publishing, Singapore, 2008)

    Book  Google Scholar 

  115. P.R. Andrew, D. McKenzie, M. Large, Multilayer reflectors in animals using green and gold beetles as contrasting examples. J. Exp. Biol. 201, 1307–1313 (1998)

    Google Scholar 

  116. B.D. Wilts, K. Michielsen, H. De Raedt, D.G. Stavenga, Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal. J. R. Soc. Interface 9, 1609–1614 (2012)

    Article  Google Scholar 

  117. V. Saranathan et al., Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales. Proc. Natl. Acad. Sci. 107, 11676–11681 (2010)

    Article  CAS  Google Scholar 

  118. X. Wu, A. Erbe, D. Raabe, H.O. Fabritius, Extreme optical properties tuned through phase substitution in a structurally optimized biological photonic polycrystal. Adv. Funct. Mater. 23, 3615–3620 (2013)

    Article  CAS  Google Scholar 

  119. H. Ghiradella, Insect cuticular surface modifications: scales and other structural formations. Adv. In Insect Phys. 38, 135–180 (2010)

    Article  Google Scholar 

  120. D. Hull, T.W. Clyne, An Introduction to Composite Materials (Cambridge University Press, Cambridge, 1996)

    Book  Google Scholar 

  121. K. Jin, X. Feng, Z. Xu, Mechanical properties of chitin-protein interfaces: a molecular dynamics study. Bionanoscience 3, 312–320 (2013)

    Article  Google Scholar 

  122. Z. Yu, D. Lau, Molecular dynamics study on stiffness and ductility in chitin–protein composite. J. Mater. Sci. 50, 7149–7157 (2015)

    Article  CAS  Google Scholar 

  123. S. Nikolov et al., Revealing the design principles of high-performance biological composites using ab initio and multiscale simulations: the example of lobster cuticle. Adv. Mater. 22, 519–526 (2010)

    Article  CAS  Google Scholar 

  124. F.G. Barth, A Spider’s World: Senses and Behavior (Springer Science & Business Media, Berlin, 2013)

    Google Scholar 

  125. J. Lian, J. Wang, Microstructure and mechanical anisotropy of crab Cancer magister exoskeletons. Exp. Mech. 54, 229–239 (2014)

    Article  CAS  Google Scholar 

  126. H. Fabritius, C. Sachs, D. Raabe, S. Nikolov, M. Friák, J. Neugebauer, Chitin in the exoskeletons of Arthropoda: From ancient design to novel materials science, Chitin: formation and diagenesis, ed. By S.N. Gupta (Springer, Germany, 2011)

    Google Scholar 

  127. E. Degtyar, M.J. Harrington, Y. Politi, P. Fratzl, The mechanical role of metal ions in biogenic protein-based materials. Angew. Chemie Int. Ed. 53, 12026–12044 (2014)

    Article  CAS  Google Scholar 

  128. J.F.V. Vincent, Arthropod cuticle: a natural composite shell system. Compos. Part A Appl. Sci. Manuf. 33, 1311–1315 (2002)

    Article  Google Scholar 

  129. S.R. Cohen, E. Kalfon-Cohen, Dynamic nanoindentation by instrumented nanoindentation and force microscopy: a comparative review. Beilstein J. Nanotechnol. 4, 815–833 (2013)

    Article  CAS  Google Scholar 

  130. D.M. Ebenstein, L.A. Pruitt, Nanoindentation of biological materials. Nano Today 1, 26–33 (2006)

    Article  Google Scholar 

  131. I. Zlotnikov, E. Zolotoyabko, P. Fratzl, Nano-scale modulus mapping of biological composite materials: theory and practice. Prog. Mater Sci. 87, 292–320 (2017)

    Article  CAS  Google Scholar 

  132. I. Zlotnikov et al., In situ elastic modulus measurements of ultrathin protein-rich organic layers in biosilica: towards deeper understanding of superior resistance to fracture of biocomposites. RSC Adv. 3, 5798 (2013)

    Article  CAS  Google Scholar 

  133. B. Bayerlein et al., Inherent role of water in damage tolerance of the prismatic mineral-organic biocomposite in the shell of Pinna nobilis. Adv. Funct. Mater. 26, 3663–3669 (2016)

    Article  CAS  Google Scholar 

  134. B. Bar-On, B. Bayerlein, H. Blumtritt, I. Zlotnikov, Dynamic response of a single interface in a biocomposite structure. Phys. Rev. Lett. 115, 1–5 (2015)

    Article  CAS  Google Scholar 

  135. S.L. Young et al., A spider’s biological vibration filter: micromechanical characteristics of a biomaterial surface. Acta Biomater. 10, 4832–4842 (2014)

    Article  CAS  Google Scholar 

  136. B. Bar-On, F.G. Barth, P. Fratzl, Y. Politi, Multiscale structural gradients enhance the biomechanical functionality of the spider fang. Nat. Commun. 5, 3894 (2014)

    Article  CAS  Google Scholar 

  137. M.-M. Giraud-Guille, Plywood structures in nature. Biomaterials 3, 221–227 (1998)

    CAS  Google Scholar 

  138. F.G. Barth, Microfiber reinforcement of an arthropod cuticle. Laminated composite material in biology. Z. Zellforsch. Mikrosk. Anat. 144, 409–433 (1973)

    Article  CAS  Google Scholar 

  139. S.A. Wainwright, Mechanical Design in Organisms (Princeton University Press, Princeton, 1982)

    Google Scholar 

  140. B. Bar-On, H.D. Wagner, Structural motifs and elastic properties of hierarchical biological tissues—a review. J. Struct. Biol. 183, 149–164 (2013)

    Article  CAS  Google Scholar 

  141. D. Labonte, A.K. Lenz, M.L. Oyen, On the relationship between indentation hardness and modulus, and the damage resistance of biological materials. Acta Biomater. 57, 373–383 (2017)

    Article  CAS  Google Scholar 

  142. D. Tabor, The hardness of solids. Rev. Phys. Technol. 1, 145 (1970)

    Article  Google Scholar 

  143. A.C. Fischer-Cripps, Introduction to Contact Mechanics. Springer Science+Business Media, LLC (Springer US) (2007)

    Google Scholar 

  144. B. Bhushan, Principles and Applications of Tribology (Wiley, New York, 2013)

    Book  Google Scholar 

  145. A.K. Bhattacharya, W.D. Nix, Finite element simulation of indentation experiments. Int. J. Solids Struct. 24, 881–891 (1988)

    Article  Google Scholar 

  146. A.K. Bhattacharya, W.D. Nix, Finite element analysis of cone indentation. Int. J. Solids Struct. 27, 1047–1058 (1991)

    Article  Google Scholar 

  147. M.F. Ashby, L.J. Gibson, Cellular Solids: Structure and Properties (Press Syndicate of the University of Cambridge, Cambridge, 1997)

    Google Scholar 

  148. F.W. Zok, A. Miserez, Property maps for abrasion resistance of materials. Acta Mater. 55, 6365–6371 (2007)

    Article  CAS  Google Scholar 

  149. S. Amini, A. Miserez, Wear and abrasion resistance selection maps of biological materials. Acta Biomater. 9, 7895–7907 (2013)

    Article  CAS  Google Scholar 

  150. D.N. Moses, M.G. Pontin, J.H. Waite, F.W. Zok, Effects of hydration on mechanical properties of a highly sclerotized tissue. Biophys. J. 94, 3266–3272 (2008)

    Article  CAS  Google Scholar 

  151. Y. Shelef, B. Bar-On, Surface protection in bio-shields via a functional soft skin layer: lessons from the turtle shell. J. Mech. Behav. Biomed. Mater. 1 (2017)

    Google Scholar 

  152. S. Suresh, Graded materials for resistance to contact deformation and damage. Science 292, 2447–2451 (2001)

    Article  CAS  Google Scholar 

  153. J.G. Kunkel, W. Nagel, M.J. Jercinovic, Mineral fine structure of the American lobster cuticle. J. Shellfish Res. 31, 512–526 (2012)

    Article  Google Scholar 

  154. H. Hertz, Üeber die berührung fester elastischer Körper. J. fur die reine und Angew. Math. 92, 156–171 (1882)

    Google Scholar 

  155. K.L. Johnson et al., Contact Mechanics (Cambridge University Press, Cambridge, 1985)

    Book  Google Scholar 

  156. C.C. Broomell, F.W. Zok, J.H. Waite, Role of transition metals in sclerotization of biological tissue. Acta Biomater. 4, 2045–2051 (2008)

    Article  CAS  Google Scholar 

  157. R.O. Ritchie, The conflicts between strength and toughness. Nat. Mater. 10, 817–822 (2011)

    Article  CAS  Google Scholar 

  158. F.D. Fischer, O. Kolednik, J. Predan, H. Razi, P. Fratzl, Crack driving force in twisted plywood structures. Acta Biomater. 55, 349–359 (2017)

    Article  CAS  Google Scholar 

  159. N. Suksangpanya, N.A. Yaraghi, D. Kisailus, P. Zavattieri, Twisting cracks in Bouligand structures. J. Mech. Behav. Biomed. Mater. 76, 38–57 (2017)

    Article  Google Scholar 

  160. S.M. Chen, H.L. Gao, Y.B. Zhu, H.B. Yao, L.B. Mao, Q.Y. Song, S.H. Yu, Biomimetic twisted plywood structural materials. Nat. Sci. Rev. 5(5), 703–714 (2018)

    Article  Google Scholar 

  161. N. Suksangpanya, N.A. Yaraghi, R.B. Pipes, D. Kisailus, P. Zavattieri, Crack twisting and toughening strategies in Bouligand architectures. Int J Solids Struct. 150, 83–106 (2018)

    Article  Google Scholar 

  162. A.G. Atkins, Y.-W. Mai, Elastic and Plastic Fracture: Metals, Polymers, Ceramics, Composites, Biological Materials (Ellis Horwood; Halsted Press, 1985)

    Google Scholar 

  163. R.H. Hackman, Chitin and the fine structure of cuticles, in Chitin and Benzoylphenyl Ureas, pp. 1–32 (1987)

    Google Scholar 

  164. M.M. Giraud-Guille, H. Chanzy, R. Voung, Chitin crystals in arthropod cuticles revealed by diffraction contrast transmission electron microscopy. J. Struct. Biol. 103, 232–240 (1990)

    Article  CAS  Google Scholar 

  165. M.H. Dickinson et al., How animals move: an integrative view. Source Sci. New Ser. 288, 100–106 (2000)

    CAS  Google Scholar 

  166. J.-H.J.-H. Dirks, D. Taylor, Fracture toughness of locust cuticle. J. Exp. Biol. 215, 1502–1508 (2012)

    Article  Google Scholar 

  167. J.H. Dirks, D. Taylor, Veins improve fracture toughness of insect wings. PLoS One 7, e43411 (2012)

    Article  CAS  Google Scholar 

  168. J. Sun, B. Bhushan, The structure and mechanical properties of dragonfly wings and their role on flyability. Comptes Rendus—Mec. 340, 3–17 (2012)

    Article  Google Scholar 

  169. N.S. Ha, T.L. Jin, N.S. Goo, H.C. Park, Anisotropy and non-homogeneity of an Allomyrina dichotoma beetle hind wing membrane. Bioinspiration Biomimetics 6, 46003 (2011)

    Article  CAS  Google Scholar 

  170. M. Sun et al., Influence of cuticle nanostructuring on the wetting behaviour/states on cicada wings. PLoS One 7, e35056 (2012)

    Article  CAS  Google Scholar 

  171. S.A. Combes, T.L. Daniel, Flexural stiffness in insect wings I. Scaling and the influence of wing venation. J. Exp. Biol. 206, 2979–2987 (2003)

    Article  CAS  Google Scholar 

  172. S.A. Combes, Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending. J. Exp. Biol. 206, 2989–2997 (2003)

    Article  CAS  Google Scholar 

  173. S.A. Combes, T.L. Daniel, Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta. J. Exp. Biol. 206, 2999–3006 (2003)

    Article  CAS  Google Scholar 

  174. A.M. Mountcastle, S.A. Combes, Wing flexibility enhances load-lifting capacity in bumblebees. Proc. Biol. Sci. 280, 20130531 (2013)

    Article  Google Scholar 

  175. F.O. Lehmann, The mechanisms of lift enhancement in insect flight. Naturwissenschaften 91, 101–122 (2004)

    Article  CAS  Google Scholar 

  176. S.P. Sane, The aerodynamics of insect flight. J. Exp. Biol. 206, 4191–4208 (2003)

    Article  Google Scholar 

  177. L. Zhao, Q. Huang, X. Deng, S.P. Sane, Aerodynamic effects of flexibility in flapping wings. J. R. Soc. Interface 7, 485–497 (2010)

    Article  Google Scholar 

  178. T. Nakata, H. Liu, Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach. Proc. Biol. Sci. 279, 722–731 (2012)

    Article  Google Scholar 

  179. H. Izumi, M. Suzuki, S. Aoyagi, T. Kanzaki, Realistic imitation of mosquito’s proboscis: electrochemically etched sharp and jagged needles and their cooperative inserting motion. Sensors Actuators A Phys. 165, 115–123 (2011)

    Article  CAS  Google Scholar 

  180. M.K. Ramasubramanian, O.M. Barham, V. Swaminathan, Mechanics of a mosquito bite with applications to microneedle design. Bioinspiration Biomimetics 3, 1–10 (2008)

    Article  Google Scholar 

  181. Z.-L. Zhao et al., Structures, properties, and functions of the stings of honey bees and paper wasps: a comparative study. Biol. Open 4, 921–928 (2015)

    Article  CAS  Google Scholar 

  182. M.A. Meyers, A.Y.M. Lin, Y.S. Lin, E.A. Olevsky, S. Georgalis, The cutting edge: sharp biological materials. JOM 60, 19–24 (2008)

    Article  CAS  Google Scholar 

  183. A. van der Meijden, T. Kleinteich, A biomechanical view on stinger diversity in scorpions. J. Anat. 230(4), 497–509 (2017)

    Article  Google Scholar 

  184. C. Broeckhoven, A. du Plessis, Has snake fang evolution lost its bite? New insights from a structural mechanics viewpoint. Biol. Lett. 13(8), 20170293 (2017)

    Article  Google Scholar 

  185. B. Bhushan, Insects Locomotion, Piercing, Sucking and Stinging Mechanisms, in Biomimetics. Springer Series in Materials Science, vol. 279 (Springer, Cham, 2018)

    Google Scholar 

  186. B. Bar-On, On the form and bio-mechanics of venom-injection elements. Acta Biomater. 85, 263–271 (2019)

    Article  Google Scholar 

  187. Z. Liu et al., Enhanced protective role in materials with gradient structural orientations: lessons from nature. Acta Biomater. 44, 31–40 (2016)

    Article  CAS  Google Scholar 

  188. A. van der Meijden, T. Kleinteich, A biomechanical view on stinger diversity in scorpions. J. Anat. 230, 497–509 (2017)

    Article  Google Scholar 

  189. W. Gnatzy, J.J. Tautz, Ultrastructure and mechanical properties of an insect mechanoreceptor: stimulus-transmitting structures and sensory apparatus of the cereal filiform hairs of Gryllus. Cell Tissue Res. 213, 441–463 (1980)

    CAS  Google Scholar 

  190. P. Fratzl, F.G. Barth, Biomaterial systems for mechanosensing and actuation. Nature 462, 442–448 (2009)

    Article  CAS  Google Scholar 

  191. M.E. McConney et al., Surface force spectroscopic point load measurements and viscoelastic modelling of the micromechanical properties of air flow sensitive hairs of a spider (Cupiennius salei). J. R. Soc. Interface 6, 681–694 (2009)

    Article  Google Scholar 

  192. F.G. Barth, Spider mechanoreceptors. Curr. Opin. Neurobiol. 14, 415–422 (2004)

    Article  CAS  Google Scholar 

  193. H.-E. Dechant, F.G. Rammerstorfer, F.G. Barth, Arthropod touch reception: Stimulus transformation and finite element model of spider tactile hairs. J. Comp. Physiol.—A Sensory, Neural Behav. Physiol. 187, 313–322 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yael Politi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Politi, Y., Bar-On, B., Fabritius, HO. (2019). Mechanics of Arthropod Cuticle-Versatility by Structural and Compositional Variation. In: Estrin, Y., Bréchet, Y., Dunlop, J., Fratzl, P. (eds) Architectured Materials in Nature and Engineering. Springer Series in Materials Science, vol 282. Springer, Cham. https://doi.org/10.1007/978-3-030-11942-3_10

Download citation

Publish with us

Policies and ethics