Microtruss Composites
- 872 Downloads
Abstract
This chapter provides a framework for predicting buckling instabilities (global and local) in composite struts using a discretizing approach to divide the cross-section into finite regions or blocks (elements) with distinctive composition and material properties. This framework is applied to two compositing approaches: (1) an additive process, e.g. electrodeposition of nanocrystalline nickel (n-Ni) on steel or aluminum substrates creating a discrete interface, and (2) mass transport phenomena, e.g. gas carburization of steel microtrusses creating a continuous and gradual change in composition. The individual composite struts are prone to failure through inelastic/elastic global/local buckling instabilities due to their typically high slenderness ratio (for lightweight requirements). An optimal architecture is defined as the lightest architecture in the defined architectural space that can support a given load before failing; mathematically equivalent to satisfying the Kuhn-Tucker condition. For the electrodeposition example, the optimal trajectory was found to be dependent on the substrate material as well as the level of adhesion of the sleeve to the substrate. However, in the carburizing example, optimal architectures cannot be found using the same optimization approach due to the negligible weight penalty associated with the addition of carbon atoms (i.e. no trade-off between strength and mass). Other factors such as ductility and fracture toughness need to be addressed to find the optimal architectures.
References
- 1.V.S. Deshpande, M.F. Ashby, N.A. Fleck, Acta Mater. 49, 6 (2001)Google Scholar
- 2.M.F. Ashby, Phil. Trans. R. Soc. A 364, 1838 (2006)CrossRefGoogle Scholar
- 3.O. Bouaziz, J.P. Masse, Y. Brechet, Scr. Mater. 64, 2 (2011)CrossRefGoogle Scholar
- 4.C.R. Calladine, Int. J. Solids Struct. 14, 2 (1978)CrossRefGoogle Scholar
- 5.J.C. Maxwell, Philos. Mag. Series 4(27), 182 (1864)Google Scholar
- 6.V.S. Deshpande, N.A. Fleck, M.F. Ashby, J. Mech. Phys. Solids 49, 8 (2001)CrossRefGoogle Scholar
- 7.V.S. Deshpande, N.A. Fleck, Int. J. Solids Struct. 38, 36–37 (2001)CrossRefGoogle Scholar
- 8.A.T. Lausic, C.A. Steeves, G.D. Hibbard, J. Sandw. Struct. Mater. 16, 3 (2014)CrossRefGoogle Scholar
- 9.P.M. Weaver, M.F. Ashby, Prog. Mater Sci. 41, 1 (1997)CrossRefGoogle Scholar
- 10.E. Bele, B.A. Bouwhuis, C. Codd, G.D. Hibbard, Acta Mater. 59, 15 (2011)CrossRefGoogle Scholar
- 11.Z. Hashin, S. Shtrikman, J. Appl. Phys. 33, 10 (1962)CrossRefGoogle Scholar
- 12.Z. Hashin, S. Shtrikman, J. Mech. Phys. Solids 11, 2 (1963)CrossRefGoogle Scholar
- 13.W. Voigt, Lehrbuch der Krystallphysik (B. G. Teuber, Leipzig, 1928), p. 962Google Scholar
- 14.A. Reuss, Z. Angew, Math. Mech. 9, 1 (1929)Google Scholar
- 15.M.F. Ashby, Acta Metall. Mater. 41, 5 (1993)CrossRefGoogle Scholar
- 16.H.S. Kim, S.I. Hong, an S.J. Kim, J. Mater. Process. Technol. 112, 1 (2001)Google Scholar
- 17.O. Bouaziz, P. Buessler, Adv. Eng. Mater. 6, 1–2 (2004)CrossRefGoogle Scholar
- 18.T. Gladman, I.D. McIvor, F.B. Pickering, J. Iron Steel Inst. 210, 12 (1972)Google Scholar
- 19.B. Karlsson, G. Linden, Mater. Sci. Eng. 17, 2 (1975)Google Scholar
- 20.I. Tamura, Y. Tomota, A. Akao, Y. Yamaoka, M. Ozawa, S. Kanatani, Trans. ISIJ 13, 4 (1973)Google Scholar
- 21.R.T.C. Choo, J.M. Toguri, A.M. Elsherik, U. Erb, J. Appl. Electrochem. 25, 4 (1995)CrossRefGoogle Scholar
- 22.A.W. Thompson, Acta Metall. 25, 1 (1977)CrossRefGoogle Scholar
- 23.N. Wang, Z.R. Wang, K.T. Aust, U. Erb, Mater. Sci. Eng., A 237, 2 (1997)CrossRefGoogle Scholar
- 24.B.A. Bouwhuis, T. Ronis, J.L. McCrea, G. Palumbo, G.D. Hibbard, Compos. Sci. Technol. 69, 3–4 (2009)CrossRefGoogle Scholar
- 25.W. Ramberg, W.R. Osgood, National Advisory Committee for Aeronautics Technical Note No. 902 (1943)Google Scholar
- 26.E. Voce, Metall. 51 (1955)Google Scholar
- 27.J.W. Dini, Electrodeposition: the materials science of coatings and substrates (Noyes Publications, Park Ridge, NJ, 1993)Google Scholar
- 28.Modern electroplating, 4th ed. edited by M. Schlesinger, M. Paunovic (Wiley Interscience, Toronto, ON, 2000)Google Scholar
- 29.K. Abu Samk, B. Yu, G.D. Hibbard, Composites Part A 43, 6 (2012)Google Scholar
- 30.E. Bele, B.A. Bouwhuis, G.D. Hibbard, Acta Mater. 57, 19 (2009)CrossRefGoogle Scholar
- 31.F.R. Shanley, J. Aeronaut. Sci. 14, 5 (1947)CrossRefGoogle Scholar
- 32.F.R. Shanley, Strength of Materials (McGraw-Hill, New York, 1957)Google Scholar
- 33.J.M. Gere, S.P. Timoshenko, Mechanics of Materials, 4th edn. (PWS, Boston, MA, 1997)Google Scholar
- 34.S.P. Timoshenko, J.M. Gere, Theory of Elastic Stability, 2nd edn. (Dover Publications, Mineola, NY, 2009)Google Scholar
- 35.B. Yu, K. Abu Samk, G.D. Hibbard, Metall. Mater. Trans. A 46, 5 (2015)Google Scholar
- 36.B. Chehab, H. Zurob, D. Embury, O. Bouaziz, Y. Brechet, Adv. Eng. Mater. 11, 12 (2009)CrossRefGoogle Scholar
- 37.D.R. Poirier, G.H. Geiger, Transport Phenomena in Materials Processing (TMS, Warrendale, 1994)Google Scholar
- 38.ASM Handbook—Properties and Selection: Irons, Steels, and High-Performance Alloys (Materials Park, Ohio, 1990), Vol. 1Google Scholar
- 39.J. Agren, Scr. Metall. 20, 11 (1986)CrossRefGoogle Scholar
- 40.D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd edn. (Chapman & Hall, London, UK, 1992)CrossRefGoogle Scholar
- 41.S. Allain, O. Bouaziz, M. Takahashi, ISIJ Int. 52, 4 (2012)CrossRefGoogle Scholar